- 782 名前:132人目の素数さん mailto:sage [2021/07/11(日) 03:17:32.93 ID:drg0rdAF.net]
- >>718 (上)
〔基本問題3〕 定数a,b,cは正とし、 E = { (x,y,z) | (x/a)^2+(y/b)^2+(z/c)^2 = 1, x>0, y>0, z>0} とする。 (1) λを定数とし、G(x,y,z) = xyz + λ{(x/a)^2+(y/b)^2+(z/c)^2 - 1} とする。 G_x(x。,y。,z。) = G_y(x。,y。,z。) = G_z(x。,y。,z。) = 0 となる E 上の 点 (x。,y。,z。) を求めよ。 (2) 関数 g(x,y,z) = xyz の E 上での最大値を求めよ。 (東北大 情報科学研究科)
|

|