[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 17:53 / Filesize : 682 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)8



84 名前:現代数学の系譜 雑談 mailto:sage [2021/05/16(日) 19:59:09.80 ID:vPH1Cr+L.net]
>>67
下記
”特別な順序型
Q を有理数全体の集合、R を実数全体の集合とし、<Q と <R をそれぞれ Q 上と R 上の通常の大小関係とすると、(Q, <Q) と (R, <R) はともに全順序集合である。通常、type(Q, <Q) は η 、type(R, <R) は λ で表される。”
おサルが屁理屈こねても、ムダムダw(^^;

(参考)
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E5%9E%8B
順序型
順序型(じゅんじょがた、order type)とは、全順序集合同士の "形" を比較するために、その構造のみに注目することによって得られる概念である。

正式な定義
上の説明では type(A, <A) をきちんと定義したことにはならない。なぜなら、全順序集合の "形" とは何かが定義されていないからである。(※) をみたすようにすべての全順序集合 (A, <A) に対して type(A, <A) を定義する方法として、まず次のようなものが考えられる。それは、(A, <A) と同型な順序集合全体の集合を type(A, <A) と定義する方法である。実際、このように定義すれば (※) が成り立つことが示せるので何の問題もないように思えるかもしれない。だが、この方法には一つ大きな欠点がある。それは、A が空集合でない限り (A, <A) と同型な順序集合全体の集合というものは存在しないことが(集合論の公理から)示されるということである。つまり、そのような集まりはあまりに大きすぎるため集合になることができないのである。したがって上のような仕方で type(A, <A) を定義することはできない。そこで、この方法を少し修正して次のように順序型を定義する






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<682KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef