[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 17:53 / Filesize : 682 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)8



686 名前:。realなものの代表は自然数であり、idealなものの典型は抽
象的・超限的な集合、自然数全体の集合ωのpowersetIP(ω)(=continuum)のpower
setP(P(ω))(realvaluedfunctions),etc.である。”
とか、あるいは
「「有限の立場」で意味がある命題が、Tの公理で表わされた超限的な仮定のも
とに証明されても、それは既に「有限の立場」で確かめ得る」
”Hilbertの眼前には、一方で集合論の逆理があり、他方にその集合論を用いた超限
的で神学的とも評された新しいスタイルの証明があった”
とか

なるほどと思った

https://www.jstage.jst.go.jp/article/emath1996/2002/Autumn-Meeting1/2002_Autumn-Meeting1_42/_pdf/-char/ja
証明論について
新井敏康(神戸大学自然科学研究科)
2002年9月27日
概要
P3
2 Hilbert
「有限の立場」での形式的理論Tの無矛盾性証明は何をもたらすだろうか?
「「有限の立場」で意味がある命題が、Tの公理で表わされた超限的な仮定のも
とに証明されても、それは既に「有限の立場」で確かめ得る」となる。
ここに潜んでいるHilbertの考え方はこうである。数学の対象には2種類ある:real
なものとidealなものと。realなものの代表は自然数であり、idealなものの典型は抽
象的・超限的な集合、自然数全体の集合ωのpowersetIP(ω)(=continuum)のpower
setP(P(ω))(realvaluedfunctions),etc.である。realなものに関する命題、例えば
自然数に関する命題でも、∀X1∈ω∃x2∈ω∀X3∈ω∃x4∈ω…R(x1,x2,x3,x4,…)
のように「任意」や「存在」が複雑に入り組んで使用されたなら、idealであると考
える。

つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<682KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef