[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 17:53 / Filesize : 682 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)8



642 名前:tructure.
Then R is a strictly well-founded relation if and only if there is no infinite sequence ?an? of elements of S such that:
∀n∈N:an+1 R an

Proof
Reverse Implication
Suppose R is not a strictly well-founded relation.
So by definition there exists a non-empty subset T of S which has no strictly minimal element.
Let a∈T.

Since a is not strictly minimal in T, we can find b∈T:bRa.
This holds for all a∈T.
Hence the restriction R↑T×T of R to T×T is a right-total endorelation on T.

So, by the Axiom of Dependent Choice, it follows that there is an infinite sequence ?an? in T such that:
∀n∈N:an+1 R an
It follows by the Rule of Transposition that if there is no infinite sequence ?an? of elements of S such that:
∀n∈N:an+1 R an
then R is a strictly well-founded relation.


つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<682KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef