[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 17:53 / Filesize : 682 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)8



288 名前:十分条件は弱到達不能であることになる。

α_0 は正則な強極限基数である。選択公理を仮定すると、他の全ての無限基数は正則かまたは(弱)極限である。しかしながら、その両方になれるもの、即ち弱到達不能基数は中でも大きいものに限られる。

順序数が弱到達不能基数であるための必要十分条件は、それが正則順序数であり、かつ、正則順序数の列の極限であることである(0,1,α_0)は正則順序数だが正則順序数の列の極限ではない)。強極限かつ弱到達不能な基数は強到達不能である。

強到達不能基数の存在は、グロタンディーク宇宙が存在するという形で仮定される場合がある。この両者の間には深い繋がりがある。

モデルと無矛盾性
ZFCの下では、k が強到達不能であるときVk がZFCのモデルになる。 ZFの下では、k が弱到達不能であるときゲーデル宇宙のLk がZFCのモデルになる。 よって、ZF+"弱到達不能基数が存在する"はZFCが無矛盾であることを導き、不完全性定理よりその存在はZFCで証明できない。 つまり、到達不能基数は巨大基数の一種である。
(引用終り)
以上
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<682KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef