[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/12 00:12 / Filesize : 796 KB / Number-of Response : 1114
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)7



960 名前:132人目の素数さん [2021/05/12(水) 14:20:49.79 ID:empbdNTV.net]
>>860 補足
追加資料
"実数の整列化について"
と選択公理(=整列可能定理)

(参考)
https://oshiete.goo.ne.jp/qa/2250335.html
教えてgoo
実数の整列化について
質問者:kurororo質問日時:2006/07/02 04:29回答数:2件
 大学で数学を学んでいる者です。最近、集合と位相の科目で、整列可能定理を学びました。それは、選択公理・Zornの補題と同値な命題であって、その内容は
「任意の集合において、適当な順序関係を定義すれば、整列集合にすることができる。(整列集合とは、空でない部分集合が常に最小元を持つ集合)」
という内容でした。
 さて、実数の集合は通常の順序関係では整列集合ではありません(例えば開区間は最小数を持ちません)。定理によれば、適当な順序によって実数の集合も整列集合になる訳です。
 それなら、それは具体的にはどのような順序なのかと調べて見たんですけど、どうも見つかりません。どなたか知っている人がいれば教えてください。

No.2ベストアンサー
回答者: adinat 回答日時:2006/07/03 02:32
連続濃度以上の集合に整列順序が存在することは、選択公理なしには証明できません(というより同値ですよね)。証明は抽象的構成を与えることですから、ある意味ではそれは不可能なわけです。といってしまうと身もふたもないですから、整列順序がどういうものかを納得するためにも雑な例をあげてみます。

整列順序というのは、ようするに最も小さい数があって、さらに各元に対して“次の数”が定まっているような順序です。たとえば自然数列{1,2,3,…}が典型です。実数に整列順序を入れてやりたければ、まず最小元を決めて、また各元に対して次の数を決めてやればいいのです。(しかしながら非可算個の元に対して次の元を指定するなんてことは人間には無理です(本当は可算無限個でも無理なんですけどね))

たとえば、{1,2,…,…,π,e,√2,√3,…,…,0,-1,-2,…}などという順序を考えてみましょう(左の方が小さいとする順序)。次の数さえ決まっていたらいいんです。だから上の順序は整列順序です。5の次は6だし、1兆3の次は1兆4です。πの次はeだし、eの次は√2です。0とか、πの一つ前の数字が気になったりしますが、整列順序というのはあくまでも一つ大きい数さえ決まっていたらいいんです。π^eがどこにあるかわかりませんが、それも適当に決めてやればいいのです。ようするに実数を思いついた順番にひたすら並べていけばいいのです(無限回!しかも非可算無限回!)それが整列順序というものです。

数学的帰納法ってあまり信頼がないですが、あれは自然数を一斉に順番に並べることができること(ペアノの公理)から由来する定理であって、整列可能定理というのはその非可算無限集合に拡張された超限帰納法に対応するものです。非可算無限個の元を順番に並べるという、とても有限の時間で人ができるわけがないことを考えているわけです。選択公理というのは、非空な集合の非可算無限直積から元が取れる、つまり非可算無限個の元をまったく同時に扱える、ということを主張する公理なので、そりゃあそんなこと認めてしまえば、整列順序なんて作れるよね、とそんな気がしてきませんか?(すべての実数に対してその次の数を考えてやるだけで整列順序ができるわけだから!)

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<796KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef