[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/13 07:33 / Filesize : 838 KB / Number-of Response : 1133
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文及びその関連の資料スレ



404 名前:132人目の素数さん [2023/02/12(日) 09:51:54.00 ID:t5GdbcIg.net]
>>355
つづき

The basic representation of g(A(1))
is then defined on V
by the following formulas [FrKa]:

π(u(n))=u(n),u∈h
π(E(n)α)=Xn(α)cα,π(k)=1;
This is called the homogeneous vertex operator construction of the basic representation.

The vertex operators were introduced in string theory around 1969, but the vertex operator construction entered string theory only at its revival in the mid 1980s. Thus, the representation theory of affine algebras became an important ingredient of string theory (see [GrScWi]).

The vertex operators turned out to be useful even in the theory of finite simple groups. Namely, a twist of the homogeneous vertex operator construction based on the Leech lattice produced the 196883-dimensional Griess algebra and its automorphism group, the famous finite simple Monster group (see Sporadic simple group) [FrLeMe].

The vertex operator constructions were, quite unexpectedly, applied to the theory of soliton equations. This was based on the observation (see [DaJiKaMi]) that the orbit of the vector vΛ0
of the basic representation under the loop group satisfies an infinite hierarchy of partial differential equations, the simplest of them being classical soliton equations, like the Korteweg-de Vries equation.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<838KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef