[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/13 07:33 / Filesize : 838 KB / Number-of Response : 1133
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文及びその関連の資料スレ



347 名前:

追加

https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%B9%E3%83%BB%E3%83%A0%E3%83%BC%E3%83%B3%E3%82%B7%E3%83%A3%E3%82%A4%E3%83%B3
モンストラス・ムーンシャイン
歴史
1980年、オリバー・アトキン(英語版)(A. Oliver L. Atkin)とポール・フォング(Paul Fong)とステファン・スミス(Stephen D. Smith)は、そのような次数付き表現が存在し、計算機での計算することで、トンプソンの発見した境界の差異を無視すると(upto) M の表現の(次元の)中へ j の係数が分解することを示した。イーゴル・フレンケル(英語版)(Igor Frenkel)とジェームズ・レポウスキー(英語版)(James Lepowsky)は、明確に、表現を構成し、マッカイ・トンプソン予想が有効であるという答えを与えた。さらに彼らは、構成したムーンシャイン加群
V^# と呼ばれるベクトル空間が、頂点作用素代数(英語版)(vertex operator algebra)の加法構造を持ち、その自己同型群が正確に M に一致することを示した。

https://en.wikipedia.org/wiki/Igor_Frenkel
Igor Frenkel
Mathematical work
In collaboration with James Lepowsky and Arne Meurman, he constructed the monster vertex algebra, a vertex algebra which provides a representation of the monster group.[3][4]

Around 1990, as a member of the School of Mathematics at the Institute for Advanced Study, Frenkel worked on the mathematical theory of knots, hoping to develop a theory in which the knot would be seen as a physical object. He continued to develop the idea with his student Mikhail Khovanov, and their collaboration ultimately led to the discovery of Khovanov homology, a refinement of the Jones polynomial, in 2002.[5]

A detailed description of Igor Frenkel's research over the years can be found in "Perspectives in Representation Theory".

つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<838KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef