[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/13 07:33 / Filesize : 838 KB / Number-of Response : 1133
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文及びその関連の資料スレ



152 名前:132人目の素数さん mailto:sage [2023/02/02(木) 21:01:06.85 ID:IR67z+yT.net]
>>142
つづき

ヴァッファの質問への答えはイエスであったのですが, 私が衝撃を受けた理由は, 次のものです.

通常は各インスタントン数 n ごとにモジュライ空間 Mn を個別に調べていた. 一つ一つのモジュライ空間 Mn のオイラー数でなく, それらを一度に取り扱った母関数を考えるという発想が新しかった.
その上, 保型性が成り立つことは, モジュライ空間のオイラー数の列を一度に取り扱うことによって初めて見える性質であり, モジュライ空間一つ一つを見ていてるだけでは出てこない性質である. だから保型性を持つというは誰も夢想だにしなかった, 突拍子もないものである.
第一の理由は衝撃的なものではありますが, 当時ドナルドソン不変量の母関数を考えるときれいな構造を持つというクロンハイマー-ムロフカの構造定理が証明されていましたので, その方面の研究者は, そのように考えるのがよいのかもしれないと``もやもや''と感じていました. その意味では, ヴァッファが母関数を考えたことは, 革新的に新しいかと問えばそうでなかったといっていいでしょう. クロンハイマー-ムロフカの構造定理(数学セミナー8月号の亀谷さんの記事に解説があリます)は, 違ったインスタントン数を持つ二つのモジュライ空間の間に関係をつけるような新しい空間(具体的には, 2次元部分多様 体に沿って特異性を持ったインスタントンのモジュライ空間)を導入することで証明されました.

一方, 第二の理由は有限個のモジュライ空間の間の関係として記述できるものではない, という意味で完全に新しいものでしたし, 保型性という数学者にとって親しみのあるものが, 今までまったく関連すると思われていなかった4次元のインスタントンの話題に現れたので驚いたのです. こちらが衝撃を受けた本当の理由です. 特に, 保型性の裏には2次元のトーラスが隠されていることが多いので, 4次元ゲージ理論の新しい広がりを感じさせました.

電子メールへの答えはイエスだったと書きましたが, その理由はALE空間の上のインスタントンのモジュライ空間のホモロジー群がアファイン・リー環の表現空間になっているという, ちょうどその直前に私がやったばかりの仕事を使うと分かるわけでした.
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<838KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef