[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 16:57 / Filesize : 444 KB / Number-of Response : 1070
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 52



54 名前:132人目の素数さん [2021/02/20(土) 21:20:00.96 ID:Z8PgJDTw.net]
>>52
追加下記ご参考
2018年からの流れですね
(参考)
www.kurims.kyoto-u.ac.jp/~bcollas/documents/MFO-owr1816a_report_Introduction.pdf
Mathematisches Forschungsinstitut Oberwolfach
Report No. 17/2018
DOI: 10.4171/OWR/2018/17
Mini-Workshop: Arithmetic Geometry and Symmetries
around Galois and Fundamental Groups
Organised by
Benjamin Collas, Bayreuth
Pierre Dèbes, Villeneuve d’Ascq
Michael D. Fried, Billings
15 April – 21 April 2018

Abstract. The geometric study of the absolute Galois group of the rational
numbers has been a highly active research topic since the first milestones:
Hilbert’s Irreducibility Theorem, Noether’s program, Riemann’s Existence
Theorem. It gained special interest in the last decades with Grothendieck’s
“Esquisse d’un programme”, his “Letter to Faltings” and Fried’s introduction
of Hurwitz spaces. It grew on and thrived on a wide range of areas, e.g. formal
algebraic geometry, Diophantine geometry, group theory. The recent years
have seen the development and integration in algebraic geometry and Galois
theory of new advanced techniques from algebraic stacks, p-adic representations and homotopy theories. It was the goal of this mini-workshop, to bring
together an international panel of young and senior experts to draw bridges
towards these fields of research and to incorporate new methods, techniques
and structures in the development of geometric Galois theory

P5
3. Galois Anabelian and Homotopical Geometry

Schmidt and Stix presented their joint work: they showed how to use étale
homotopic methods and Mochizuki’s work to deduce the existence of anabelian
Zariski-neighbourhoods in smooth variety of any dimension. Schmidt first explained the necessary requirements and difficulties in Artin-Mazur-Friedlander
pointed-unpointed étale homotopy theory, then Stix presented the proof based on
Tamagawa’s idea of Jacobian approximation of rational points via the existence of
a certain retract.






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<444KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef