[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/10 19:48 / Filesize : 593 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)6



339 名前:論A (木3)
http://mathweb.sc.niigata-u.ac.jp/~hoshi/2012/algint13.pdf
代数序論(第 13 回・2012/07/12)

P43
定義 (正規部分群).群 G の部分群 H が,gH = Hg (∀g ∈ G) を満たすとき,H を G の正規部分群 (normal
subgroup) といい,H <△ G とかく.このとき,(左,右剰余類は一致するので) gH を単に剰余類という.
定理.H を G の正規部分群 (H <△ G) とする.剰余類の集合 G/H = {gH | g ∈ G} に対して,積 * を
(g1H) * (g2H) = (g1g2)H
と定義すれば,well-defined であり,この演算で (G/H, *) は群をなす.
群 G/H の単位元は H (= eH),gH の逆元は (gH)-1 = g-1H である.
(← G が加法群の場合には,単位元は H (= 0 + H),g + H の逆元は -g + H)
注意.上記命題の (2) から well-defined が分かる,逆に言えば,左剰余類と右剰余類が一致しない (正規部
分群でない) 場合には,積 * は well-defined ではない.例 3 (p.39) 参照)
定義 (剰余群,商群).群 (G/H, *) を群 G の正規部分群 H による剰余群または商群という.

つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<593KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef