[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 21:15 / Filesize : 502 KB / Number-of Response : 1048
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

フェルマーの最終定理の証明



1 名前:日高 mailto:kokaji222@yahoo.co.jp [2020/11/14(土) 09:19:51.37 ID:8XYDkgyN.net]
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はrが無理数なので、有理数解を持たない。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はrが有理数なので、有理数解を持つ。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

175 名前:132人目の素数さん mailto:sage [2020/11/19(木) 10:55:31.81 ID:Yd/NoUtC.net]
>>166
> >163
> 論破されまくってるんだから、素直に自分の間違い認めなよ。
>
> 何番のことでしょうか?
いままでの証明全部。

むしろ、どの証明がまともな証明なんでしょうか?

176 名前:日高 [2020/11/19(木) 11:45:03.71 ID:iPeC8tjD.net]
>169
むしろ、どの証明がまともな証明なんでしょうか?

全部です。

177 名前:132人目の素数さん [2020/11/19(木) 12:06:24.71 ID:eXi5cZ6K.net]
>>170 日高さん以外は100人が100人まともな証明じゃないと思っています。
論理が破茶滅茶です。全てにおいて。

178 名前:日高 [2020/11/19(木) 12:41:13.58 ID:iPeC8tjD.net]
>171日高さん以外は100人が100人まともな証明じゃないと思っています。
論理が破茶滅茶です。全てにおいて。


100人のうちの一人を、あげて下さい。

179 名前:132人目の素数さん [2020/11/19(木) 13:36:11.65 ID:eXi5cZ6K.net]
>>172 100人のうちの一人は私です。

ちなみに日本語は理解できてますか?

180 名前:132人目の素数さん [2020/11/19(木) 13:52:10.93 ID:eXi5cZ6K.net]
日高さんは、日高さん以外で日高さんの証明をまともだと思っている人をあげてください。

181 名前:日高 [2020/11/19(木) 14:02:04.20 ID:iPeC8tjD.net]
>174
日高さんは、日高さん以外で日高さんの証明をまともだと思っている人をあげてください。

いません。

182 名前:132人目の素数さん [2020/11/19(木) 14:03:14.98 ID:eXi5cZ6K.net]
>>175 では証明は失敗です。自分で認めましたね。

183 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:10:21.54 ID:1vGCFMXj.net]
>>172
ワシもオヌシの証明と称するものは数学的にデタラメだと確信しとる
ちなみに前スレから常駐しとるわ
嘘も100回いえば本当になるの某民族みたいなことやって面白いかえ?



184 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:12:42.10 ID:1vGCFMXj.net]
数学力が低すぎて数学を語れない
高校の数学すら理解されていない
数学も文化と歴史であり独善ではないのです

185 名前:132人目の素数さん [2020/11/19(木) 14:22:27.07 ID:eXi5cZ6K.net]
言うまでもなく、証明というのは自分以外の人を納得させるために行うのです。
自分以外に誰も納得させられない証明は失敗です。
そして、日高さん本人が失敗を認めました。
従って、このスレはもう終了してください。

186 名前:日高 [2020/11/19(木) 14:25:07.13 ID:iPeC8tjD.net]
>178
高校の数学すら理解されていない

どの部分のことでしょうか?

187 名前:日高 [2020/11/19(木) 14:26:42.53 ID:iPeC8tjD.net]
>179
そして、日高さん本人が失敗を認めました。

どの部分のことでしょうか?

188 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:26:55.32 ID:1vGCFMXj.net]
なぜ誤っていると思われるかを箇条書きすると
(1) 前スレのはやい時期から今にいたるまでずっと同じテーマに属する問題が指摘され続けている
それは主に解の集合の包含関係と整数比,無理数に関する取り扱いの2点 しかし全く改善されていない
(2) 歴史的経緯.そんな取るに足らない方法で解けるならもっと昔に解決していただろうという可能性の問題
(3) 本人の数学力の低さに起因する ずっと簡単な類似テーマの問題すら解けないで最終定理だけ証明できるらしい
(4) 最終定理からちょっとでも式がかわると(たとえ同次性を維持していても)途端に説明できなくなる,
そんなその場しのぎの解法が存在するという不自然さ (3)とあわさってインチキにしかみえない
(5) 30年以上前から考えていたりにしては内容が陳腐すぎる これはまったく勉強してこなかったという証拠になる

189 名前:日高 [2020/11/19(木) 14:29:11.72 ID:iPeC8tjD.net]
(修正5)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のx,yが無理数の場合は、s^n+t^n=(s+(n^{1/(n-1)})/w)^n…(3')となる。(s,tは有理数、wは無理数)
(3')はn^{1/(n-1)})/w=(an)^{1/(n-1)}のとき、(4)と同じとなるので、s,tは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

190 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:32:27.51 ID:h+PeQ+pP.net]
日高まもるとこのスレの日高は別人なのでは

191 名前:132人目の素数さん [2020/11/19(木) 14:34:22.05 ID:eXi5cZ6K.net]
>>181 繰り返し書きます。
証明というのは自分以外の人を納得させるために行うのです。
自分以外に誰も納得させられない証明は失敗です。

192 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:34:38.16 ID:1vGCFMXj.net]
本人が否定しないからガチぽい
30年以上考えた末がこれなら必死になるのは納得できる気がする

193 名前:日高 [2020/11/19(木) 14:35:41.71 ID:iPeC8tjD.net]
>182
なぜ誤っていると思われるかを箇条書きすると
(1) 前スレのはやい時期から今にいたるまでずっと同じテーマに属する問題が指摘され続けている

どの、指摘のことでしょうか?



194 名前:日高 [2020/11/19(木) 14:37:35.09 ID:iPeC8tjD.net]
>184
日高まもるとこのスレの日高は別人なのでは

別人です。

195 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:40:47.37 ID:1vGCFMXj.net]
>>187
レスする前に推測してください
それは >>151 に書いてあることですよ
前スレのどこで指摘されているかという話なら物凄くたくさんあるのですが
あなたにはどれが該当するかわからないのでしょうか?

196 名前:132人目の素数さん mailto:sage [2020/11/19(木) 14:47:03.70 ID:1vGCFMXj.net]
なぜスレ主が誤っていると思うかを箇条書きすると
(1) 前スレのはやい時期から今にいたるまでずっと同じテーマに属する問題が指摘され続けている
それは主に解の集合の包含関係と整数比,無理数に関する取り扱いの2点 しかし全く改善されていない (>>151)
(2) 歴史的経緯.そんな取るに足らない方法で解けるならもっと昔に解決していただろうという可能性の問題
(3) 本人の数学力の低さに起因する ずっと簡単な類似テーマの問題すら解けないで最終定理だけ証明できるらしい
(前スレ106参照)
(4) 最終定理からちょっとでも式がかわると(たとえ同次性を維持していても)途端に説明できなくなる,
そんなその場しのぎの解法が存在するという不自然さ (3)とあわさってインチキにしかみえない (前スレ742)

197 名前:日高 [2020/11/19(木) 15:04:35.92 ID:iPeC8tjD.net]
>189
前スレのどこで指摘されているかという話なら物凄くたくさんあるのですが
あなたにはどれが該当するかわからないのでしょうか?

わかりません。

198 名前:132人目の素数さん mailto:sage [2020/11/19(木) 15:07:50.41 ID:Yd/NoUtC.net]
>>170
> >169
> むしろ、どの証明がまともな証明なんでしょうか?
>
> 全部です。
証明がまともなものであるという説明が、今まで全くありません。
ひたすら日高が「正しいです」「成り立ちます」と出鱈目な根拠をもとに主張しているだけ。

これはまともとは言いません。
数学を勉強せずに証明を書きこむのはやめろ。

199 名前:132人目の素数さん [2020/11/19(木) 15:08:09.51 ID:eXi5cZ6K.net]
>>191 完全に、議論する能力が無い事を示す発言ですね。つまり日高さんとの議論が意味の無い事をを日高さん自身が示してくれました。

200 名前:132人目の素数さん mailto:sage [2020/11/19(木) 15:09:04.44 ID:1vGCFMXj.net]
検討をつけることすらできないのなら たしかに勉強もままならないでしょう
「似ているもの、ロジックの等しいもの」がわからない 確かにそれも一貫してますね

201 名前:132人目の素数さん [2020/11/19(木) 15:11:01.57 ID:eXi5cZ6K.net]
日高さん自身が証明失敗である事を認め、
日高さん自身が議論する能力が無い事を認めました。
故に、このスレは日高さん自身により存在意義が無い事が示されました。

202 名前:日高 [2020/11/19(木) 16:16:18.39 ID:iPeC8tjD.net]
(修正5)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のx,yが無理数の場合は、s^n+t^n=(s+(n^{1/(n-1)})/w)^n…(3')となる。(s,tは有理数、wは無理数)
(3')はn^{1/(n-1)})/w=(an)^{1/(n-1)}のとき、(4)と同じとなるので、s,tは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

203 名前:日高 [2020/11/19(木) 16:19:24.87 ID:iPeC8tjD.net]
>192
ひたすら日高が「正しいです」「成り立ちます」と出鱈目な根拠をもとに主張しているだけ。

どの部分が、出鱈目な根拠でしょうか?



204 名前:132人目の素数さん mailto:sage [2020/11/19(木) 16:57:45.02 ID:OoVVn0Vr.net]
日高が「正しいです」「成り立ちます」なんて100万%の出鱈目

205 名前:132人目の素数さん mailto:sage [2020/11/19(木) 17:13:02.95 ID:ZBjg6xPg.net]
>>197
> どの部分が、出鱈目な根拠でしょうか?
n^{1/(n-1)})/w=(ap)^{1/(p-1)}=2のときyを有理数にしたら
xは無理数になります
の理由を何回質問してもあんたは示せないでしょ

>>142
> >139
> でn^{1/(n-1)})/w=(ap)^{1/(p-1)}=2のときyを有理数にしたら
> xがどうなるの?
>
> xは、無理数になります。

> xは、無理数になります。
xは無理数になりますだけじゃなくて
理由は?
a,pの値に関係なく(ap)^{1/(p-1)}=2だったら無理数になるの?
無理数になることを示す計算式を書け

206 名前:日高 [2020/11/19(木) 18:01:49.24 ID:iPeC8tjD.net]
>199
n^{1/(n-1)})/w=(ap)^{1/(p-1)}=2のときyを有理数にしたら
xは無理数になります
の理由を何回質問してもあんたは示せないでしょ

x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)は、yが有理数のとき、xは無理数となります。


207 名前:理由は、(3)のxが有理数のとき、yは無理数となるからです。 []
[ここ壊れてます]

208 名前:132人目の素数さん [2020/11/19(木) 18:23:56.27 ID:lA9SSIsU.net]
>>197
お前のレス全て

209 名前:132人目の素数さん mailto:sage [2020/11/19(木) 18:34:49.24 ID:Uzga5MGt.net]
>>200
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)は、yが有理数のとき、xは無理数となります。
> 理由は、(3)のxが有理数のとき、yは無理数となるからです。
x^2+y^2=(x+2)^2でたとえばx=5とするとyが無理数になる
a=1,n=2のときもxは無理数になるんだったら間違いだろ

> 理由は?
> a,pの値に関係なく(ap)^{1/(p-1)}=2だったら無理数になるの?
> 無理数になることを示す計算式を書け
ちゃんと質問内容に即した答えを書け
> (4)は、yが有理数のとき、xは無理数となります。
> 理由は、(3)のxが有理数のとき、yは無理数となるからです。
このように主張するのなら(3)のxが有理数のときyは無理数となる
ことを示す計算式を書け

210 名前:132人目の素数さん mailto:sage [2020/11/19(木) 18:56:20.57 ID:P5rFBIf2.net]
>>200
(3)のxが有理数のときyは無理数となることを示す計算式を書いたら
次は(4)で(ap)^{1/(p-1)}=2のときにyが有理数のときxが無理数になることを
示す計算式を書け

(4)でn^{1/(n-1)})/w=(ap)^{1/(p-1)}=2のときにyを有理数にして
y=t (tは有理数)と書くことにすると
y=t=(t/2)*2=(t/2)*(ap)^{1/(p-1)}だから
これに対応する(3)のyはy=t=(t/2)*2=(t/2)*(ap)^{1/(p-1)}でa=1とした
ものでありy=(t/2)*p^{1/(p-1)}となるが
p=2ならy=(t/2)*2
p=3ならy=(t/2)*√3
p=5ならy=(t/2)*5^(1/4)
...
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)は、yが有理数のとき、xは無理数となります。
a=1,n=2を代入するとx^2+y^2=(x+2)^2はyが有理数のときxは無理数となります
x^2+y^2=(x+2)^2…(3)でありたとえばx=5とするとyは無理数となる
一方で(ap)^{1/(p-1)}=2の場合に対応する(3)の解のyは
y=(t/2)*2=t (tは有理数)と書け
x^2+y^2=(x+2)^2でy=tとするとx=(1/4)(t^2-4)だからxは有理数
よって
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)は、yが有理数のとき、xは無理数となります。
は誤り

211 名前:日高 [2020/11/19(木) 20:14:01.22 ID:iPeC8tjD.net]
>199
> xは、無理数になります。
xは無理数になりますだけじゃなくて
理由は?
a,pの値に関係なく(ap)^{1/(p-1)}=2だったら無理数になるの?
無理数になることを示す計算式を書け

(3)のx,y,zが整数比とならないので、(4)のx,y,zも整数比となりません。

212 名前:日高 [2020/11/19(木) 20:25:57.08 ID:iPeC8tjD.net]
>202
x^2+y^2=(x+2)^2でたとえばx=5とするとyが無理数になる
a=1,n=2のときもxは無理数になるんだったら間違いだろ

間違いでは、ありません。
yを有理数とすると、xは、有理数となります。

213 名前:日高 [2020/11/19(木) 20:26:54.00 ID:iPeC8tjD.net]
(修正5)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のx,yが無理数の場合は、s^n+t^n=(s+(n^{1/(n-1)})/w)^n…(3')となる。(s,tは有理数、wは無理数)
(3')はn^{1/(n-1)})/w=(an)^{1/(n-1)}のとき、(4)と同じとなるので、s,tは整数比とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。



214 名前:132人目の素数さん mailto:sage [2020/11/19(木) 20:47:20.37 ID:Yd/NoUtC.net]
>>197
> >192
> ひたすら日高が「正しいです」「成り立ちます」と出鱈目な根拠をもとに主張しているだけ。
>
> どの部分が、出鱈目な根拠でしょうか?
まともな根拠は一度も見たことがない。

他人を説得できるだけのまともな根拠があるなら、一つ例をあげよ。

215 名前:132人目の素数さん mailto:sage [2020/11/19(木) 20:49:26.60 ID:Yd/NoUtC.net]
>>204
> (3)のx,y,zが整数比とならないので、
これの証明は日高はしていない。
証明が出来ていないことが理解できないくらい勉強不足なんだから、勉強するしかない。
勉強してから出直せ。

216 名前:132人目の素数さん mailto:sage [2020/11/19(木) 21:24:50.52 ID:fNv6SBtN.net]
>>205
> yを有理数とすると、xは、有理数となります。

> 理由は?
> a,pの値に関係なく(ap)^{1/(p-1)}=2だったら無理数になるの?
> 無理数になることを示す計算式を書け
おまえはこの質問に対して
> x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)は、yが有理数のとき、xは無理数となります。
> 理由は、(3)のxが有理数のとき、yは無理数となるからです。
と書いたんだろ
(3)のxが有理数のときyは無理数と書いているじゃないか

217 名前:132人目の素数さん mailto:sage [2020/11/19(木) 21:27:49.27 ID:fNv6SBtN.net]
>>205
> yを有理数とすると、xは、有理数となります。

>>206
> (3)のx,yが無理数の場合は、s^n+t^n=(s+(n^{1/(n-1)})/w)^n…(3')となる。(s,tは有理数、wは無理数)
なんだから
(3')でy=tとするとx=sになるんだから(3')でyを有理数とするとxは有理数になるだろ

218 名前:132人目の素数さん mailto:sage [2020/11/20(金) 00:21:40.29 ID:g+udkmHM.net]
>>204

> (3)のx,y,zが整数比とならないので、(4)のx,y,zも整数比となりません。

(3)のx,y,zが自然数比にならないなら証明は終わり、って気づかないかなあ。

219 名前:132人目の素数さん [2020/11/20(金) 01:40:17.99 ID:NCpYMswo.net]
>>175で日高氏は自分の証明が誰も納得させられない事を認めた。
誰も認めない証明は失敗ということ。
つまり日高氏は自分で証明が失敗である事を認めた。
すなわちこのスレももう不要ということ。

220 名前:132人目の素数さん mailto:sage [2020/11/20(金) 01:58:03.83 ID:ajaDBYZZ.net]
不遜だけならまだしも 根本的な部分で合意形成される雰囲気がない
議論を持ち出してきた本人 >>1 が理性を持っていないのが原因だろ

221 名前:日高 [2020/11/20(金) 06:12:26.15 ID:Se7OHmlT.net]
(修正6)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のx,yが無理数の場合は、共通の無理数で割ると、共に有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

222 名前:132人目の素数さん mailto:sage [2020/11/20(金) 06:22:15.45 ID:2FHcBkEc.net]
>>214
【証明】を
・proof A s,tは有理数
から
・proof C シンプル
にスイッチしたようです。(参考:>>4-6

223 名前:132人目の素数さん [2020/11/20(金) 06:25:21.80 ID:O9v0d9Ta.net]
スレ主って認知症?



224 名前:日高 [2020/11/20(金) 06:34:59.90 ID:Se7OHmlT.net]
(修正7)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のyが無理数の場合は、両辺を共通の無理数で割ると、xは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

225 名前:日高 [2020/11/20(金) 06:40:25.00 ID:Se7OHmlT.net]
(修正8)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

226 名前:132人目の素数さん mailto:sage [2020/11/20(金) 06:59:31.32 ID:FbEGdzdC.net]
>>218
> (3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)でn=2のときはaが0以外のどんな実数でも
y=t*(an)^{1/(n-1)}とすればx=s*(an)^{1/(n-1)} (s,tは有理数)となることを
計算して示すことができる

227 名前:
本当にどんなyでも無理数で割って有理数を代入してもxが有理数にならないのか計算式を示せ
両辺を共通の無理数で割ることにnの値は関係ないので
両辺を共通の無理数で割るとxは有理数とならないことを無条件に
主張すればn=2のときにxが有理数になることに反する
[]
[ここ壊れてます]

228 名前:日高 [2020/11/20(金) 08:26:11.64 ID:Se7OHmlT.net]
>219
本当にどんなyでも無理数で割って有理数を代入してもxが有理数にならないのか計算式を示せ

p=3
x^3+y^3=(x+√3)^3を展開すると
y^3=3√3x^2+9x+3√3
共通の無理数を√3とする。
y=√3Y、y^3=3√3Y^3
3√3Y^3=3√3x^2+9x+3√3
両辺を3√3で割ると
Y^3=x^2+3/√3x+1
xを有理数とすると、式を満たさない。

229 名前:132人目の素数さん mailto:sage [2020/11/20(金) 08:42:42.66 ID:2FHcBkEc.net]
日高さん、
>>207-213 には回答しないのでしょうか?

230 名前:132人目の素数さん mailto:sage [2020/11/20(金) 09:01:54.37 ID:XlsDQX0I.net]
      , .. .    +      。         ’‘        :] . ..
,   ,:‘.          。             +   ,..
 ’‘     +   ,..       . ..; ',   ,:‘
      . .; : ’                           ' ,:‘.
           あ あ ・ ・ ・       ,:‘.      +
.. ' ,:‘.                             . ...:] ’‘
’‘     .;    こ ん な 馬 鹿 な
                                       。
.     。   ス レ ッ ド を 見 た の     ,:‘. 。
 '+。
                初 め て で す          .. ' ,:‘.
:] . ..                            .. ' ,:‘.
  ,   ,:‘.         ..; ',   ,:‘         ’‘
           + , .. .              +          ’。
 ,:‘. 。   .. . . :]:  ' ,:‘.   , .. .    +  。  , .. .    +  . : :...

231 名前:132人目の素数さん mailto:sage [2020/11/20(金) 09:12:14.43 ID:XtPz6kYN.net]
>>218
>(3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない....(*)

日高さん,x:y=1:1の解[自然数比a:bでもかまいませんが]は(3)にも存在するんだから,(3)の解x,yを共通の無理数(wとします)で割ったらx/wは有理数になりうるでしょ。
このとき,wで割って有理数になるかどうか問題になるのは z=x+r のほうです。

そして(3)でのzについて,z/w=(x+r)/w=x/w+(x/w+r/w) が有理数にならないことを証明するのがフェルマーの最終定理の証明です。
x/w,y/wは有理化し得ますから,無理数 r=n^{1/(n-1)} をx,yを有理化する共通の無理数wで割ったとき,r/wは有理数になり得ないことを証明しなければなりません。
二つの無理数r,wが整数比にならないことを証明することになります。

ですが【証明】ではそうなっていません。
何が何でも(3)でx,yともに整数比の無理数解があることを認めたくないようですね。
(3)に整数比の無理数解があることはy=xと置けば確かめられます[前にも確認しましたよね]。
そのとき共通の無理数で割ればx,yは有理数になるんですから,上の(*)はそれ自体として「誤り」になってます。

こう書くと,いつも「zを含めると,x,y,zは整数比になりません」と返ってくるのですが,それをちゃんと証明しなければならないのは「簡単な証明がある」と主張するあなたです。
主張するだけしてその証明を我々に放り投げられても「そんな簡単な証明などない」と思っている我々にはどうしようもありません。

(3)の解x,yが整数比となる無理数になることはある。共通する無理数wで割ればx'=x/w,y'=y/wは有理数になる。

このことをちゃんと理解し,受け入れたうえで証明を作り直して下さい。

232 名前:日高 [2020/11/20(金) 10:12:13.57 ID:Se7OHmlT.net]
>221
>>207-213 には回答しないのでしょうか?

本人でしょうか?

233 名前:132人目の素数さん mailto:sage [2020/11/20(金) 10:16:20.90 ID:2FHcBkEc.net]
>>224
> >221
> >>207-213 には回答しないのでしょうか?
>
> 本人でしょうか?
いえ、ちがいます。



234 名前:日高 [2020/11/20(金) 11:06:54.68 ID:Se7OHmlT.net]
>223
日高さん,x:y=1:1の解[自然数比a:bでもかまいませんが]は(3)にも存在するんだから,

x:y=1:1の場合は、(3)の解となりません。

235 名前:132人目の素数さん mailto:sage [2020/11/20(金) 11:16:08.40 ID:2FHcBkEc.net]
>>225
> >>224
> > >221
> > >>207-213 には回答しないのでしょうか?
> >
> > 本人でしょうか?
> いえ、ちがいます。

本人からのリクエストでないと、
>>207-213 には回答しない、という事でしょうか?

236 名前:日高 [2020/11/20(金) 11:26:50.61 ID:Se7OHmlT.net]
(修正8)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

237 名前:日高 [2020/11/20(金) 11:30:05.36 ID:Se7OHmlT.net]
>227
本人からのリクエストでないと、
>>207-213 には回答しない、という事でしょうか?

違います。

238 名前:132人目の素数さん mailto:sage [2020/11/20(金) 12:58:37.30 ID:XtPz6kYN.net]
>>226
217の(修正8)では
x^n+y^n=(x+n^{1/(n-1)})^n…(3) であってますよね。

「(3)は任意の自然数比 x:y=a:b (a,bは自然数)となる解x,yをもつ。」

上の「 」

239 名前:烽フ命題は誤りですか? []
[ここ壊れてます]

240 名前:132人目の素数さん mailto:sage [2020/11/20(金) 14:06:17.80 ID:XlsDQX0I.net]
>>228
      , .. .    +      。         ’‘        :] . ..
,   ,:‘.          。             +   ,..
 ’‘     +   ,..       . ..; ',   ,:‘
      . .; : ’                           ' ,:‘.
           あ あ ・ ・ ・       ,:‘.      +
.. ' ,:‘.                             . ...:] ’‘
’‘     .;    こ ん な 馬 鹿 な
                                       。
.     。   数学の証明 を 見 た の     ,:‘. 。
 '+。
                初 め て で す          .. ' ,:‘.
:] . ..                            .. ' ,:‘.
  ,   ,:‘.         ..; ',   ,:‘         ’‘
           + , .. .              +          ’。
 ,:‘. 。   .. . . :]:  ' ,:‘.   , .. .    +  。  , .. .    +  . : :...

241 名前:日高 [2020/11/20(金) 14:55:32.42 ID:Se7OHmlT.net]
>230
x^n+y^n=(x+n^{1/(n-1)})^n…(3) であってますよね。

「(3)は任意の自然数比 x:y=a:b (a,bは自然数)となる解x,yをもつ。」

上の「 」内の命題は誤りですか?

間違いでは、ありませんが、
x=a/w、y=b/w、w={n^(1/(n-1)}/{(a^n+b^n)^(1/n)-a}ならば、
a,bが、どんな有理数でも、両辺は、等しくなります。

a,bが、どんな実数でも両辺は、等しくなります。

242 名前:132人目の素数さん mailto:sage [2020/11/20(金) 16:29:05.08 ID:XtPz6kYN.net]
>>232
>x:y=1:1の場合は、(3)の解となりません。....(*)
あなたのこの反論に対して
「(3)には任意の有理数比(なんらな任意の実数比)をとる解x,yが存在している」と主張し,この主張は正しいのか間違っているのか,と聞いています。

これに対しては「はい」「いいえ」で答えられるはずです。

>間違いでは、ありませんが、
>x=a/w、y=b/w、w={n^(1/(n-1)}/{(a^n+b^n)^(1/n)-a}ならば、
>a,bが、どんな有理数でも、両辺は、等しくなります。

これはどういう意味ですか?
(3)には任意の整数比(自然数比)をとる解x,yは存在しているんですか,いないんですか?
(*)の主張は取り下げられるんですか,正しいとして維持されるんですか。
上の二つの質問に「はい」「いいえ」でお答え下さい。

243 名前:132人目の素数さん mailto:sage [2020/11/20(金) 16:43:54.81 ID:XtPz6kYN.net]
ああ,失礼。この聞き方では「はい」「いいえ」で答えられませんね。

(3)には任意の整数比(自然数比)をとる解x,yは存在するのか。
(*)の主張は取り下げるのか。

上の二つの質問に「はい」「いいえ」でお答え下さい。



244 名前:132人目の素数さん mailto:sage [2020/11/20(金) 17:16:59.41 ID:k08K903S.net]
>>220
> >219
> 本当にどんなyでも無理数で割って有理数を代入してもxが有理数にならないのか計算式を示せ
>
> p=3
> x^3+y^3=(x+√3)^3を展開すると
> y^3=3√3x^2+9x+3√3
> 共通の無理数を√3とする。
> y=√3Y、y^3=3√3Y^3
> 3√3Y^3=3√3x^2+9x+3√3
> 両辺を3√3で割ると
> Y^3=x^2+3/√3x+1
> xを有理数とすると、式を満たさない。

計算の仕方がおかしい
共通の無理数を√3とするのならばx=√3X,y=√3Yだろ
おまえのやりかただとp=2の場合でも
x^2+y^2=(x+√3)^2を展開するとy^2=2√3x+3
共通の無理数を√3とする
y=√3Y,y^2=3Y^2
3Y^2=2√3x+3
両辺を3で割るとY^2=(2√3/3)x+1
p=2の場合でもxを有理数とすると式を満たさない
となりn=2のときにxが有理数になることに反するからおまえの証明は間違い

正しい計算は
共通の無理数を√3とするのならばx=√3X,y=√3Y
p=2
x^2+y^2=(x+√3)^2を展開するとy^2=2√3x+3
共通の無理数を√3とする
y=√3Y,y^2=3Y^2
3Y^2=2√3*(√3X)+3=2*3X+3
両辺を3で割るとY^2=2X+1
両辺にX^2を足すとX^2+Y^2=X^2+2X+1=(X+1)^2

p=3なら
x^3+y^3=(x+√3)^3を展開すると
y^3=3√3x^2+9x+3√3
共通の無理数を√3とする。
y=√3Y,y^3=3√3Y^3
x=√3X,x^2=3X^2
3√3Y^3=3√3*3X^2+9(√3X)+3√3
両辺を3√3で割るとY^3=3X^2+3X+1
両辺にX^3を足すとX^3+Y^3=X^3+3X^2+3X+1=(X+1)^3

日高やり直し
>>218
> (3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。
x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)でn=2のときはaが0以外のどんな実数でも
y=t*(an)^{1/(n-1)}とすればx=s*(an)^{1/(n-1)} (s,tは有理数)となることを
計算して示すことができる
本当にどんなyでも無理数で割って有理数を代入してもxが有理数にならないのか計算式を示せ
両辺を共通の無理数で割ることにnの値は関係ないので
両辺を共通の無理数で割るとxは有理数とならないことを無条件に
主張すればn=2のときにxが有理数になることに反する

245 名前:日高 [2020/11/20(金) 17:56:20.33 ID:Se7OHmlT.net]
>234
(3)には任意の整数比(自然数比)をとる解x,yは存在するのか。

はい。

x=a/w、y=b/w、w={n^(1/(n-1)}/{(a^n+b^n)^(1/n)-a}ならば、
a,bが、どんな有理数でも、両辺は、等しくなります。

246 名前:132人目の素数さん mailto:sage [2020/11/20(金) 18:32:14.41 ID:XtPz6kYN.net]
>>236
だとしたら,その解を定数(実数)倍した(4)の解(の集合)にはx:yが整数比になる場合が含まれるはずです。
以前の【証明】でとられていた[であろうと判断される]証明の方法論,つまり

>(3)の解を定数倍した(4)の解の集合にはx:yが整数比となるもの[元または要素]は含まれない,従ってこの整数比の解をもつ(3)'は成り立たない

とされていた証明の方法は撤回された,と判断してよいのですね。

247 名前:日高 [2020/11/20(金) 18:37:53.34 ID:Se7OHmlT.net]
>235
計算の仕方がおかしい

修正します。

p=3
x^3+y^3=(x+√3)^3を展開すると
 y^3=3√3x^2+9x+3√3

y=eYとおくと、y^3=(e^3)Y^3(Yを有理数、eを無理数とする。)
(e^3)Y^3=3√3x^2+9x+3√3
両辺をe^3で割ると
Y^3={(3√3)/(e^3)}x^2+{9/(e^3)}x+{(3√3)/(e^3)}
e=√3とおく。
xを有理数とすると、式を満たさない。

248 名前:日高 [2020/11/20(金) 18:42:15.50 ID:Se7OHmlT.net]
(修正8)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となる。(4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

249 名前:132人目の素数さん mailto:sage [2020/11/20(金) 18:47:25.25 ID:k08K903S.net]
>>238
> 修正します。
修正になっていない

おまえのやりかただとp=2の場合でも
x^2+y^2=(x+√3)^2を展開するとy^2=2√3x+3
共通の無理数を√3とする
y=√3Y,y^2=3Y^2
3Y^2=2√3x+3
両辺を3で割るとY^2=(2√3/3)x+1
p=2の場合でもxを有理数とすると式を満たさない
となりn=2のときにxが有理数になることに反するからおまえの証明は間違い

正しくは
x^2+y^2=(x+√3)^2
x=(3/2)*√3,y=2*√3は満たす
y=√3YならY=2
x=(3/2)*√3なら式を満たし有理数でないがx,yは整数比
x=(3/2)*√3,Y=2ならx,yは整数比
x:Y=(3/2)*√3:2ならx:y=3:4で整数比

250 名前:132人目の素数さん mailto:sage [2020/11/20(金) 18:58:51.61 ID:k08K903S.net]
>>238
おまえは式を変形したら証明すべきことも変わる可能性を検討しなければ
ならないことが分からないのか?

> Y^3={(3√3)/(e^3)}x^2+{9/(e^3)}x+{(3√3)/(e^3)}
> e=√3とおく。
おまえは意味のない付け足しをしてごまかそうとするが
結局同じ式Y^3=x^2+3/√3x+1を使うのだろ?

> xを有理数とすると、式を満たさない。
x=s*√3,Y=t (s,tは有理数)ならx,yは整数比
x=s*√3は有理数でない
Yが有理数のときにx=s*√3 (sは有理数)でないことを示さないといけない

251 名前:132人目の素数さん mailto:sage [2020/11/20(金) 19:19:16.43 ID:XtPz6kYN.net]
現在の【証明】についても指摘しておきます。
>236のように(3)には任意の整数比(自然数比)をとる解x,yが存在すると認めるならば

>(3)のyが無理数の場合は、展開して両辺を共通の無理数で割ると、xは有理数とならない。

【証明】のこの部分は訂正する必要があります。
(3)に整数比となる無理数解x,yがあるなら,その解x,yをともに有理化する無理数wは当然存在します。
何度も指摘していると思いますが,この場合「有理数にならない」と主張すべきなのはz/wのほうです。
z=x+rですから,r/wが有理数にならないことを証明しなければなりません。

「(3)の解x,y,zをある無理数wで割ると、x/w,y/w,z/wがともに有理数となることはない」
ことを証明する必要があります。

また,「展開して両辺を共通の無理数で割ると」のうち「展開して」は不要だと思います。
展開して x^{n-1},x^{n-2},....,x の各項をある無理数wで割るんですか?
あえて展開したいなら止めはしませんが,(3)の解x,y,zをそのままwで割った方がよいと思います。

当然ですが,y^nとx^{n-1},x^{n-2},....,x の各項ををある無理数wでわったときx,y[yも当然含まれます]が有理数とならないことを【証明】するのはあなたです。
主張だけして証明を放置するのは,即ち【証明】の失敗であることをお忘れなきよう。

252 名前:132人目の素数さん mailto:sage [2020/11/20(金) 19:36:19.16 ID:XtPz6kYN.net]
それでですね,

「(3)の解x,y,zをある無理数wで割ると、x/w,y/w,z/wがともに有理数となることはない」

ことを証明しようとするとき,X=x/w,Y=y/w,Z=z/w とおくと,w<>1ですから,X,Y,Zは(3)の解ではなく,一般式である x^n+y^n=z^n の解となります。
したがって,上の命題は

「X^n+Y^n=Z^n (X,Y,Zは正の実数,nはn>=3の自然数)が成り立つとき,X,Y,Zがともに有理数(整数)となることはない」

ことを証明することになるんですよ。
ははは,出発点に戻ってしまいました。
これは困りましたね。
はははのは。

253 名前:132人目の素数さん [2020/11/21(土) 05:06:21.09 ID:i8f8yV+i.net]
>>175で日高さんは証明失敗を認めたんだから、指導して下さった皆様にお礼を言ってスレを閉めなさいよ。



254 名前:日高 [2020/11/21(土) 07:21:00.59 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

255 名前:日高 [2020/11/21(土) 07:39:54.35 ID:tjWDZkEF.net]
>241
Yが有理数のときにx=s*√3 (sは有理数)でないことを示さないといけない

244で、x^3+y^3=(x+(a3)^(1/2))^3のx,y,zは、整数比とならないことを、示しています。

256 名前:日高 [2020/11/21(土) 07:46:52.79 ID:tjWDZkEF.net]
>242
「(3)の解x,y,zをある無理数wで割ると、x/w,y/w,z/wがともに有理数となることはない」
ことを証明する必要があります。

(3)の解が、無理数x/w,y/w,z/wとなるならば、解は、有理数x,y,zとなります。

257 名前:132人目の素数さん mailto:sage [2020/11/21(土) 07:47:56.39 ID:uo3dLKP9.net]
>>245
【証明】を
・proof C シンプル
から
・proof B ★の補題を使う
にスイッチしたようです。(参考:>>4-6

258 名前:132人目の素数さん mailto:sage [2020/11/21(土) 08:15:26.35 ID:A7z01Vgc.net]
 みなさん、いい加減レスするのやめませんか。かまうから本人は調子に乗って何度もカキコする。

 もっともレスしている人も楽しんでいるのとは思いますがね。

259 名前:132人目の素数さん mailto:sage [2020/11/21(土) 10:35:16.97 ID:A0dw3eC/.net]
>>249
結局、同じことを繰り返し言ってるだけなんだよね。
認知症の老人と全く同じ。

260 名前:132人目の素数さん mailto:sage [2020/11/21(土) 12:07:36.53 ID:Qtwcr4yS.net]
>>247
>(3)の解が、無理数x/w,y/w,z/wとなるならば、解は、有理数x,y,zとなります

>242でのx,y,zは
>(3)に整数比となる無理数解x,yがあるなら,その解x,yをともに有理化する無理数wは当然存在します。
とあるように,x,yを(3)の整数比となる無理数解としているので,x/w,y/w,(z/w)を(3)の解としているのではありません。

x/w,y/wが無理数となるならば,って何ですか???

x,yは(3)の無理数解で,wはそれで割るとx,yをともに有理化する無理数なんだから,x/w,y/wは有理数に決まっているでしょう。
その上でz/wまで有理化したら,フェルマーの最終定理には反例があることになるので,z/wが有理数化しないことを証明することが【証明】の焦点になりますね,という話をしているんです

もう一つ指摘しておくと,共通する無理数wで割って有理数となるなるとき,w<>1ならばx/w,y/w,z/wは(3)の解ではありません。
(3)の解である必要条件はz-w=r=n^{n-1}であることです。
z/w - x/w=(z-x)/w =r/w であり,従ってw<>1のときx/w,y/w,z/wは,整数比になるとならないとにかかわらず

261 名前:,(3)の解ではありません。
だから,(3)には有理数解がないから矛盾するとは言えません[>247はそう主張したいのだと解釈しましたが,それで合ってますか?]。
ですから,この指摘はそのままでは不正確であるので以下のように訂正されるべきです。

>(3)の解が、整数比の無理数解 x,y,zを持つならば、x^n+y^n=z^n には有理数解x/w,y/w,z/wが存在することになる。

上のように訂正するのならば,それはまったく正しい指摘だと思います。
この命題は逆も真ですから,同値命題でありどちらかを否定する必要があります。
(3)には x,y,zが整数比となる無理数解は存在しない,または x/w,y/wが有理数のとき,z/w は無理数であることを証明しなければなりません。
その【証明】を提供する責任があるのは,フェルマーの最終定理には簡単な証明があると主張する「あなた」です。

主張しただけでは【証明】は失敗である。この事をくれぐれもお忘れなきよう
[]
[ここ壊れてます]

262 名前:日高 [2020/11/21(土) 12:24:04.04 ID:tjWDZkEF.net]
>251
>(3)の解が、整数比の無理数解 x,y,zを持つならば、x^n+y^n=z^n には有理数解x/w,y/w,z/wが存在することになる。

(3)の解が、整数比の有理数解 x,y,zを持たないので、整数比の無理数解は、存在
しません。

263 名前:132人目の素数さん mailto:sage [2020/11/21(土) 12:26:41.69 ID:Qtwcr4yS.net]
>>247
>(3)の解が、整数比の無理数解 x,y,zを持つならば、x^n+y^n=z^n には有理数解x/w,y/w,z/wが存在することになる。

上のように修正してみましたが,でも,日高さんはそれでは困るんでしょう。
>x^n+y^n=z^n には有理数解x/w,y/w,z/wが存在することになる。
だと,>251のように,だからそれを証明しろって言われるだけですもんね。

>(3)の解が、整数比の無理数解 x,y,zを持つならば、(3)には有理数解x/w,y/w,z/wが存在することになる。
>これは矛盾するので,(3)には整数比となる無理数解は存在しない。
>∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

この一番上の行さえ正しければ,証明は大成功,拍手喝采のうちに栄光をつかめるんですけどね。



264 名前:132人目の素数さん [2020/11/21(土) 12:38:05.64 ID:jClfoery.net]
日高さんは証明失敗したのだから、早くスレ閉じなさいよ。

265 名前:132人目の素数さん mailto:sage [2020/11/21(土) 12:39:24.14 ID:Qtwcr4yS.net]
>>252
>(3)の解が、整数比の有理数解 x,y,zを持たないので、

だから,それを証明しないと誰も認めてくれませんよ,といつも通りお答えしておきます。

>>245
>(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
>(4)の解は(3)の解のa^{1/(n-1)}倍となる。

何をどう言われても,ここに戻ってきますよね。2行目の

>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
この後半部分「yが有理数のときに整数比となる」は,「(4)には有理数解があることになる」なら正しいですよ。
でも,>252で指摘したように,このときyをw(<>1)で割っていることになるので,このy/wは(3)の解ではありません。
ですから,ここで矛盾は導けません。
なので,(4)の有理数解の存在可能性は否定できていません。

>(4)の解は(3)の解のa^{1/(n-1)}倍となる。

でも,定数倍してるだけなので,有理数解の解の存在可能性が残ったままです。したがって

>∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

とはいえません。

日高さん,今度は(3)の解を1でない数wで割っても(3)の解である,という強烈な固定観念[間違ってます]が垣間見えてきてますよ。

266 名前:132人目の素数さん [2020/11/21(土) 12:57:11.45 ID:jClfoery.net]
「存在するかもしれない」と「存在しない」をチャンポンにしてて、それをいつまでも理解できないのだから、いつまでも証明は失敗し続ける。
っていうか、自分で証明失敗認めたんだから早くスレ閉じなさいよ。

267 名前:日高 [2020/11/21(土) 13:28:50.53 ID:tjWDZkEF.net]
>256
自分で証明失敗認めたんだから早くスレ閉じなさいよ。

どの部分が失敗でしょうか?

268 名前:日高 [2020/11/21(土) 13:30:50.73 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

269 名前:132人目の素数さん [2020/11/21(土) 13:38:36.14 ID:jClfoery.net]
>>257 認知症?

>>175で自分で証明失敗認めてるじゃん。
誰も納得させられない証明は失敗だ。

270 名前:132人目の素数さん [2020/11/21(土) 13:43:06.84 ID:jClfoery.net]
「存在するかもしれない」と「存在しない」をチャンポンにしているようなアンポンタンには証明は無理だから、早くスレ閉じなさいよ。

そして>>175で証明失敗を認めたんだから、早くスレ閉じなさいよ。

忘れたフリする悪質なあなたのために繰り返し書いてあげました。

271 名前:日高 [2020/11/21(土) 13:52:49.05 ID:tjWDZkEF.net]
>260
そして>>175で証明失敗を認めたんだから、早くスレ閉じなさいよ。

どうして、174が、証明失敗になるのでしょうか?

272 名前:132人目の素数さん [2020/11/21(土) 13:55:16.26 ID:jClfoery.net]
>>261 では聞こうか。誰も納得させられない証明が失敗じゃないと本気で思ってるの?

273 名前:日高 [2020/11/21(土) 13:57:11.58 ID:tjWDZkEF.net]
>255
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
この後半部分「yが有理数のときに整数比となる」は,「(4)には有理数解があることになる」なら正しいですよ。
でも,>252で指摘したように,このときyをw(<>1)で割っていることになるので,このy/wは(3)の解ではありません。
ですから,ここで矛盾は導けません。
なので,(4)の有理数解の存在可能性は否定できていません。

この部分が、理解できません。



274 名前:日高 [2020/11/21(土) 13:59:30.88 ID:tjWDZkEF.net]
>262
>>261 では聞こうか。誰も納得させられない証明が失敗じゃないと本気で思ってるの?

はい。

275 名前:132人目の素数さん [2020/11/21(土) 14:01:14.11 ID:jClfoery.net]
>>264 なぜそう思うのですか?

276 名前:132人目の素数さん mailto:sage [2020/11/21(土) 14:07:00.90 ID:uo3dLKP9.net]
「自分の書いた証明だ」というだけで、>>1にとっては成功なのかもな。

277 名前:132人目の素数さん [2020/11/21(土) 14:10:08.87 ID:jClfoery.net]
>>264 は日高さんの異常性を確認できる重要なレスです。なぜそう思うのかレスをお願いします。

278 名前:日高 [2020/11/21(土) 14:15:56.30 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

279 名前:日高 [2020/11/21(土) 14:2 ]
[ここ壊れてます]

280 名前:1:10.18 ID:tjWDZkEF.net mailto: >267
>>264 は日高さんの異常性を確認できる重要なレスです。なぜそう思うのかレスをお願いします。

間違いと思うところを、指摘してください。確実な指摘がないからです。
[]
[ここ壊れてます]

281 名前:132人目の素数さん [2020/11/21(土) 14:24:33.69 ID:TgokhiZ4.net]
ワイルズの論文でも、レフェリーが納得しないと証明に成功した事にはならない。つまり証明失敗という事になる。
証明というのは自分以外の人が理解して、初めて成功になる。
誰も納得しない証明を失敗ではないとしたら、訳の分からない世界になる。
日高さんは訳の分からない世界の住人という事か?
だとしたら議論が収束するはずがないので、議論は無意味。スレは無意味という事になる。

282 名前:132人目の素数さん [2020/11/21(土) 14:30:51.53 ID:jClfoery.net]
>>269 間違いの箇所云々の問題じゃないんです。
誰も納得させられない証明を失敗じゃないと考える理由を聞いているんです。
誤魔化さないでください。ピントがズレた回答をしないでください。

283 名前:132人目の素数さん mailto:sage [2020/11/21(土) 14:42:01.69 ID:A7z01Vgc.net]
 M 高校の男女比は男 25%、女 75% である。男子生徒の 12%、女子生徒の 8% は性体験済みである。
 任意に生徒を 1 人選び、「君は性体験済みか?」と聞いたところ、「はい」と答えた。この生徒が女子
である確率を求める。ただし男女とも全員が正直に答えるものとする。

 日高クンはフェルマーの定理に現を抜かす前に、こういう問題で数学的論理力を養うべきだ。



284 名前:日高 [2020/11/21(土) 14:48:26.40 ID:tjWDZkEF.net]
>270
だとしたら議論が収束するはずがないので、議論は無意味。スレは無意味という事になる。

どうして、そう言えるのでしょうか?

285 名前:日高 [2020/11/21(土) 14:52:25.81 ID:tjWDZkEF.net]
>271
誰も納得させられない証明を失敗じゃないと考える理由を聞いているんです。

正しいと思うからです。

286 名前:132人目の素数さん mailto:sage [2020/11/21(土) 14:55:22.67 ID:PhLfjH62.net]
誰も納得しないなら証明は失敗している
日高氏の案は複数の知恵者に検討されたが誰も納得しなかった
世の中にはそもそもほとんど見てもらえない論文がたくさんある
もちろんその中に正しいもの、価値のあるものはあると考えるが
日高氏の場合は見てもらった上で論理の欠陥を最初から最後まで指摘され続けているのだから
これはどう考えても正しいと考えるのは無理ということがわかるだろう

287 名前:日高 [2020/11/21(土) 14:55:55.43 ID:tjWDZkEF.net]
>272
日高クンはフェルマーの定理に現を抜かす前に、こういう問題で数学的論理力を養うべきだ。

こういう問題では、数学的論理力は養われません。

288 名前:132人目の素数さん [2020/11/21(土) 14:57:29.81 ID:jClfoery.net]
>>274 ピントをズラさないでください。正しい正しくない云々の話をしているのではありません。日本語が通じていますか?
「誰も納得させられない証明を失敗じゃないと考える理由」を聞いているんです。

289 名前:日高 [2020/11/21(土) 14:58:22.27 ID:tjWDZkEF.net]
>275
これはどう考えても正しいと考えるのは無理ということがわかるだろう

私は、正しいと、考えています。

290 名前:日高 [2020/11/21(土) 15:00:33.93 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

291 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:10:01.56 ID:PhLfjH62.net]
誰も納得しないなら証明は失敗している
繰り返す、誰も納得しないなら証明は失敗している
同じ論理の欠陥が複数人から指摘され続けているにもかからわず
その根幹部分については前スレの最初から今にいたるまで
一切の修正もなければ説明もない、証明は独善ではない
合計約60回の修正は何の意味があったの? まったくないでしょ
壊れたロボットのようだ

292 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:13:10.40 ID:Qtwcr4yS.net]
>>263
説明する前に一つ確認しておきます。

>x^n+y^n=(x+n^{1/(n-1)})^n…(3)

s,t,uを正の実数,wをw<>1の正の実数であるとする。(x,y,z)=(s,t,u)が(3)の解であるとき,(s/w,t/w,u/w) も(3)の解である。

これは正しいですか?

293 名前:日高 [2020/11/21(土) 15:20:47.14 ID:tjWDZkEF.net]
>280
誰も納得しないなら証明は失敗している

自分は、正しいと思っています。



294 名前:日高 [2020/11/21(土) 15:23:39.50 ID:tjWDZkEF.net]
>281
wをw<>1の正の実数

この意味を教えていただけないでしょうか。

295 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:32:53.91 ID:oFSLUNVq.net]
>>269
> >267
> >>264 は日高さんの異常性を確認できる重要なレスです。なぜそう思うのかレスをお願いします。
>
> 間違いと思うところを、指摘してください。確実な指摘がないからです。

確実な指摘は大量にあるし、繰り返されている。

それを理解する能力を身につけていないのを棚に挙げて、他人に頼るな。

296 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:35:00.15 ID:oFSLUNVq.net]
何が間違いで何が間違えでないのか判断する能力が無いから、間違っているのに

297 名前:正しいと主張しているだけ。

そもそも間違いとは何なのか理解できない人に間違いを指摘するのは不可能。
[]
[ここ壊れてます]

298 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:35:55.81 ID:eBRkOhPs.net]
>>282
それしか言えないんですか?
他の人は正しいと思っていません。
他の人を納得させられなければ証明は失敗です。

299 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:45:20.30 ID:PhLfjH62.net]
あと修正verおなじのを延々とあげるのやめてくれますか
>>268 >>279 これ同じものですよね
こういうこと何度もやってるでしょ 何の意味があるのですか

300 名前:132人目の素数さん mailto:sage [2020/11/21(土) 15:48:44.27 ID:PhLfjH62.net]
>>264
>>282

      r;ァ'N;:::::::::::::,ィ/      >::::::::::ヽ
.      〃  ヽル1'´        ∠:::::::::::::::::i
       i′  ___, - ,. = -一   ̄l:::::::::::::::l
.      ! , -==、´r'          l::::::/,ニ.ヽ
      l        _,, -‐''二ゝ  l::::l f゙ヽ |、 ここはお前の日記帳じゃねえんだ
        レー-- 、ヽヾニ-ァ,ニ;=、_   !:::l ) } ト
       ヾ¨'7"ry、`   ー゙='ニ,,,`    }::ヽ(ノ  チラシの裏にでも書いてろ
:ーゝヽ、     !´ " ̄ 'l,;;;;,,,.、       ,i:::::::ミ
::::::::::::::::ヽ.-‐ ト、 r'_{   __)`ニゝ、  ,,iリ::::::::ミ
::::::::::::::::::::Vi/l:::V'´;ッ`ニ´ー-ッ-,、:::::`"::::::::::::::;゙ ,  な!
:::::::::::::::::::::::::N. ゙、::::ヾ,.`二ニ´∠,,.i::::::::::::::::::::///
:::::::::::::::::::::::::::::l ヽ;:::::::::::::::::::::::::::::::::::::::::::/ /
::::::::::::::::::::::::::::::! :|.\;::::::::::::::::::::::::::::::/ /
::::::::::::::::::::::::::::/ ヽ|;;,, ` ‐---‐ "´_,/
:::::::::::::::/ヽ;/ へ、\;;;;:. ;;;-─ _,.ニ-ァ'´\
::::/7 ) ./ |××| | ;;; ;;;::::| ̄ /×××>、
/ ././ /ニ=、\±L/;;;;:::_;;:」_,/×××/  \
 l. l /  ー- ゝ |××× /×× ゝ‐''´==

301 名前:132人目の素数さん mailto:sage [2020/11/21(土) 16:11:03.46 ID:Qtwcr4yS.net]
>>283
≠ですよ。半角では書けないし,全角の≠ではみてくれがよくないので<>と書きます。

コンピュータ言語ではよくある比較演算子の一つです。C,Python,Ruby,Javaなどでは != ですが,こちらの方がわかりやすいですか。
手書きの時は≠と書きますし,Tex だと \neq で済むのでそう書きますが,キーボード操作に一番手間がかからないということでそう書いてます。
気に入らないのであれば読み替えて下さい。

日高さんはエクセルで関数を使ったりはなさらないんですね。エクセルのVBAでも不等号は<>です。

302 名前:132人目の素数さん mailto:sage [2020/11/21(土) 16:24:40.57 ID:f+TuV+i0.net]
>>246
> >241
> Yが有理数のときにx=s*√3 (sは有理数)でないことを示さないといけない
>
> 244で、x^3+y^3=(x+(a3)^(1/2))^3のx,y,zは、整数比とならないことを、示しています
示していますと書いたって実際は示していないんだから示したことにならんだろ

x=s*(a3)^(1/2),y=t*(a3)^(1/2),z=(s+1)*(a3)^(1/2) (s,tは有理数)なら整数比だろ
(4)で(a3)^(1/2)=2だったときにy=4で有理数だったとするとこのyに対応する
(3)の解のyはy=2*(a3)^(1/2)でa=1としたものだから
y=2*√3であり無理数

303 名前:132人目の素数さん [2020/11/21(土) 16:41:10.66 ID:jClfoery.net]
日高さん>>277に回答してください。
日高さんの証明が正しいとか正しくないとかは関係ありません。
証明に対する考え方を聞いているのですから



304 名前:日高 [2020/11/21(土) 17:49:55.43 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

305 名前:日高 [2020/11/21(土) 18:08:51.76 ID:tjWDZkEF.net]
>281
>x^n+y^n=(x+n^{1/(n-1)})^n…(3)

s,t,uを正の実数,wをw<>1の正の実数であるとする。(x,y,z)=(s,t,u)が(3)の解であるとき,(s/w,t/w,u/w) も(3)の解である。

これは正しいですか?

正しくないです。

306 名前:日高 [2020/11/21(土) 18:18:48.03 ID:tjWDZkEF.net]
>290
(4)で(a3)^(1/2)=2だったときにy=4で有理数だったとするとこのyに対応する
(3)の解のyはy=2*(a3)^(1/2)でa=1としたものだから
y=2*√3であり無理数

すみません。よくわかりません。

307 名前:日高 [2020/11/21(土) 18:21:49.24 ID:tjWDZkEF.net]
>291
証明に対する考え方を聞いているのですから

よく意味がわかりません。ただ、正しいと思って書いています。

308 名前:日高 [2020/11/21(土) 18:26:06.03 ID:tjWDZkEF.net]
>287
何の意味があるのですか

近くにあるほうが、見やすいからです。

309 名前:132人目の素数さん [2020/11/21(土) 18:31:54.59 ID:jClfoery.net]
>>295 スッとぼけないでください。
「誰も納得させられない証明を失敗じゃないと考える理由」を聞いているんです。
意味がわからないというのは、支離滅裂な回答です。正しいとか正しくないは関係ありません。

「誰も納得させられない証明を失敗じゃないと考える理由」を言ってください。

310 名前:132人目の素数さん mailto:sage [2020/11/21(土) 18:47:47.96 ID:f+TuV+i0.net]
>>294
> すみません。よくわかりません。

p=3
x^3+y^3=(x+(3a)^(1/2))^3で(3a)^(1/2)=2なら
x^3+y^3=(x+2)^3だろ(a=4/3となる)
y=4=2*(3*4/3)^(1/2)=2*(3a)^(1/2)
a=4/3のときy=4(有理数)であるような(4)の解を調べるとして
そのときの(3)の解のyはa=1としたものだから
y=2*(3a)^(1/2)=2*√3で有理数ではない

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(4)で(3a)^(1/2)=2のときたとえばy=4であるような解は調べられていない
(4)で(3a)^(1/2)=2のときy=4=2*2=2*(3a)^(1/2) ←→ (3)でa=1のときy=2*(3a)^(1/2)=2*√3 (無理数)

311 名前:132人目の素数さん mailto:sage [2020/11/21(土) 18:50:29.87 ID:A7z01Vgc.net]
>>276

> こういう問題では、数学的論理力は養われません。

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

まさか君の口からそんな言葉が出るとはwwwwwwww

312 名前:132人目の素数さん mailto:sage [2020/11/21(土) 19:02:26.07 ID:JMHTlFfP.net]
>>299
相手の発言をコピーして否定してるだけですよ。
典型的なBOTの応答です。

313 名前:日高 [2020/11/21(土) 19:12:40.61 ID:tjWDZkEF.net]
>297
「誰も納得させられない証明を失敗じゃないと考える理由」を言ってください。

答えることができません。



314 名前:132人目の素数さん mailto:sage [2020/11/21(土) 19:30:02.53 ID:A7z01Vgc.net]
 たとえば日高クンは、それなりの「数学的論理力」はあるらしいから

 フェルマー最終定理がまだ証明されていないとする。x、y、z をゼロでない整数とするとき、もし

  x^3 + y^3 = z^3

が成立するならば、x、y、z の少なくとも 1 つは 3 の倍数であることを証明する。

程度の問題なら、スラスラと解けるのであろうね(笑)。

315 名前:132人目の素数さん mailto:sage [2020/11/21(土) 19:30:51.23 ID:LtHs51zz.net]
日高君は、すべての指摘に対し、それを理解できないから自分は正しいと思い込む。
それなら、ここでのメッセージのやりとりはもはや無意味、ということでは。

日高君は自分の証明が正しいと死ぬまで思い込んでおればそれでよろしい。

316 名前:132人目の素数さん mailto:sage [2020/11/21(土) 20:57:43.44 ID:JYz9aWPq.net]
あの高木も消えちゃったし
日高もいずれ何の成果もないまま出てこなくなるだろう

317 名前:日高 [2020/11/21(土) 21:53:50.48 ID:tjWDZkEF.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

318 名前:132人目の素数さん mailto:sage [2020/11/21(土) 22:03:41.05 ID:LtHs51zz.net]
日高君はhttps://rio2016.5ch.net/math/を見ているのでそこで自分の証明が消えると同じのでも再アップするという推理があったな

319 名前:132人目の素数さん mailto:sage [2020/11/21(土) 22:27:37.81 ID:PhLfjH62.net]
なるほど 常にageなのもそのためか

>>272 >>302
無理だよ 彼は簡単な問題も解けない
整数論の基本的な問題も例外ではなく
なぜかFLTだけ証明できるらしい

320 名前:132人目の素数さん mailto:sage [2020/11/21(土) 22:36:11.56 ID:Qtwcr4yS.net]
>>293
x,y,zが解である場合と変数である場合を区別するのが困難なので解x,y,zはs,t,uと書き表します。
単純にx,y,zをs,t,uに置き換えると

>(3)のtが無理数のとき、s,t,uが整数比となるならば、tが有理数のときに整数比となる。

となりますが,このようにtを(3)のyの項の解と固定してみると,「tが有理数のときに整数比となる」という表現がおかしいことが分かります。
tは無理数と指定されているので,有理数に変わったりするはずがありません。
有理数となるのは,t/wです[w≠1 または w!=1 または w<>1]。
同様にして(s/w,t/w,u/w)はすべて有理数になるので,整数比になります。おっしゃるとおりです。

しかし,(3)には整数比の無理数解は存在しないとはまだ証明されていないことに注意して下さい。(x/w,y/w,z/w)はともに有理数になる可能性があるものとして扱わなければなりません。
そして,あなたも>293でお認めになったとおり,(s/w,t/w,u/w)は(3)の解ではないので,一般式x^n+y^n=z^n [あなたの【証明】では(4)]の解ということになります。
つまり,(3)には整数比の無理数解があるの

321 名前:ネらば,x^n+y^n=z^p[(4)]には有理数解,したがって整数解が存在することになります。
「あるのならば」「整数解が存在する」
何もおかしいところはありません。
「ないのならば」「整数解は存在しない」ので,(3)には「整数比の無理数解がない」ことを証明すればよいだけです。
[「(3)には有理数解がないこと」ではありません。あくまで「整数比の無理数解がない」ことです。念のため。]

しかし,あなたの【証明】中には,x/w,y/w,z/wはともに有理数になり得ない,という証明がありません。

>(3)のtが無理数のとき、[解]s,t,uが整数比となるならば、t[ここはt/wに修正する必要があります]が有理数のときに[(4)は]整数比となる[有理数解(s/w,t/w,u/w)を持つ]。

これが証明のつもりかも知れませんが,[ ]を補って読めば分かるとおり,t/wが解となるのは(4),有理数解を持たないのは(3)なので,上の記述には矛盾はありません。
つまり,あなたの【証明】では,x^n+y^n=z^n に有理数解が成立しうる可能性を排除できていません。

∴n≧3のとき、「x^n+y^n=z^nは自然数解x,y,zを持たない」ことは依然として証明されていません。
[]
[ここ壊れてます]

322 名前:132人目の素数さん mailto:sage [2020/11/21(土) 22:49:19.70 ID:LtHs51zz.net]
>>305 日高君

> (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。

まともな議論がしたいなら、この言い方はやめるんだな。
「(3)は」「x,y,zは整数比とならない」と言い切ったのか,
yが有理数のときにそうなると言ったのかがはっきりしない。

ここをはっきりさせないなら、私は日高君を誠実さに欠ける人物だと言おうと思う。

323 名前:132人目の素数さん mailto:sage [2020/11/21(土) 22:55:10.39 ID:Qtwcr4yS.net]
>>305
長々と書き込んでしまいましたが,まとめると【証明】の
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。

>tが無理数のとき、(3)の解s,t,uが整数比となるならば、(4)はt/wが有理数のときに整数比となる有理数解(s/w,t/w,u/w)を持つ。
と解するしかなく,そう解すれば矛盾はありません。
(4)が有理数解を持ちうることを宣言してしまいましたが,そこから先にそれを否定する証明[s,t,uは整数比とならない]がないので,
【証明】は失敗ということになります。



324 名前:132人目の素数さん [2020/11/22(日) 01:03:15.05 ID:vCBzE0bB.net]
日高さん。
誰も納得しない証明は失敗です。
日高さんの証明は誰も納得しません。
故に日高さんの証明は失敗です。

日高さんがどう思っていようが関係ありません。
証明の失敗は客観的に決まります。

簡単な日本語と理屈で書きましたので、理解できましたね?

325 名前:日高 [2020/11/22(日) 07:32:49.33 ID:RmMAvok9.net]
>298
(4)で(3a)^(1/2)=2のときたとえばy=4であるような解は調べられていない

これは、x^3+4^3=(x+2)^3を調べていないということですね。
x^3+4^3=(x+2)^3は、(4)なので、
(4)の解x,y,zは、(3)の解x,y,zの定数倍となります。
(3)の解x,y,zが、整数比とならないので、(4)の解x,y,zも、整数比となりません。

326 名前:日高 [2020/11/22(日) 07:36:39.96 ID:RmMAvok9.net]
>302
フェルマー最終定理がまだ証明されていないとする。x、y、z をゼロでない整数とするとき、もし

  x^3 + y^3 = z^3

が成立するならば、x、y、z の少なくとも 1 つは 3 の倍数であることを証明する。

程度の問題なら、スラスラと解けるのであろうね(笑)。

わかりません。

327 名前:日高 [2020/11/22(日) 07:51:43.95 ID:RmMAvok9.net]
>308
つまり,あなたの【証明】では,x^n+y^n=z^n に有理数解が成立しうる可能性を排除できていません。

この、前の文章を、理解することが、できませんので、簡単な例を挙げていただけないでしょうか。

たとえば、p=2の場合で、示していただけないでしょうか。

328 名前:日高 [2020/11/22(日) 07:53:14.68 ID:RmMAvok9.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

329 名前:日高 [2020/11/22(日) 07:57:39.29 ID:RmMAvok9.net]
>310
(4)が有理数解を持ちうることを宣言してしまいましたが,

この文章が、理解できません。

330 名前:日高 [2020/11/22(日) 08:01:01.32 ID:RmMAvok9.net]
>309
「(3)は」「x,y,zは整数比とならない」と言い切ったのか,
yが有理数のときにそうなると言ったのかがはっきりしない。

「yが有理数のとき」です。

331 名前:日高 [2020/11/22(日) 08:07:00.03 ID:RmMAvok9.net]
>311
誰も納得しない証明は失敗です。
証明の失敗は客観的に決まります。

理解できません。
証明の失敗は、その失敗を証明することによって、決まるとおもいます。

332 名前:132人目の素数さん mailto:sage [2020/11/22(日) 08:07:32.72 ID:9sloYBti.net]
>>301
> 答えることができません。

なぜ答えられないのですか?

333 名前:日高 [2020/11/22(日) 08:29:46.46 ID:RmMAvok9.net]
>319
> 答えることができません。

なぜ答えられないのですか?

わからないからです。



334 名前:132人目の素数さん mailto:sage [2020/11/22(日) 08:44:30.22 ID:+zRyke/w.net]
>>320
あなたの考えを聞いているのに「わからない」なんて答えはないでしょう。
日本語で自分の考えを表現することができないんですね。
異常です。

335 名前:132人目の素数さん mailto:sage [2020/11/22(日) 08:57:00.24 ID:RqumzcAu.net]
>>314
x^2+y^2=(x+√3)^2=z^2...(*) は有理数解(3つの解s,t,uがともに有理数となる,という意味で用います)を持ちません。
z-x=√3ですから当然です。少なくともx,yのどちらかが無理数になります。

しかし,整数比となる無理数解は持ちます。(s,t,u)=(4√3,3√3,5√3)は u-s=5√3-4√3=√3であり,また(4√3)^2+(3√3)^2=48+27=75=(5√3)^2 なので,(s,t,u)は(*)の解となります。
これはx^2+y^2=z^2...(**) という一般式において,(s,t,u)を√3で割った(s/√3,t/√3,u/√3)=(4,3,5)が整数解となることを示しています。
このとき(s,t,u)を√3で割った(s/√3,t/√3,u/√3)=(4,3,5)は(**)を満たしますが,(*)を満たしません。(4+√3)≠5となるからです。

まとめると,(*)で

336 名前:整数比となる無理数解があれば,(**)で有理数解を持つことになりますが,そこでの有理数解は,(*)の解ではありません。
(*)には有理数解がなくても,整数比となる無理数解があれば,一般式(**)で有理数解,整数解を持ちます。

n>=3のときでも同じです。
あなたの(3)式に有理数解がなくても,整数比となる無理数解があれば,x^n+y^n=z^nは整数解を持つことになります。
逆にx^n+y^n=z^nに整数解があれば,(3)式は整数比となる無理数解を持つでしょう。
[念のために強調しておきます。(3)式が有理数解を持つのではありません。]

ですので,(3)式で証明すべきことは「整数比となる無理数解」がないことです。
(3)式が有理数解をもたないことは,以上から分かるように,何の意味もないことです。
z-x=(無理数)と設定すればn=2でもn>=3でも,有理数解は生じようがありません。

整数解を持つはずのn=2でも有理数解を持たない(*)の形式の式において「有理数解を持たないこと」をいくら強調しても(**)の一般式において整数解がないことの根拠になり得ません。

以上です。参考になると・・・よいですね。
[]
[ここ壊れてます]

337 名前:日高 [2020/11/22(日) 09:01:01.44 ID:RmMAvok9.net]
>321
あなたの考えを聞いているのに「わからない」なんて答えはないでしょう。

「考え」が、ありません。

338 名前:132人目の素数さん mailto:sage [2020/11/22(日) 09:07:25.46 ID:9sloYBti.net]
>>323
なるほど。何の考えもないんですね。
それでは、ここで書き込みをするのは楽しいですか?

339 名前:132人目の素数さん [2020/11/22(日) 09:19:11.49 ID:uc8YdnL6.net]
>>323

わからない。
考えが無い。
というなら教えてあげます。

誰も納得しない証明は失敗です。
はい。教えました。もうわかりますね。

そして、誰も日高さんの証明を納得してません。
ですので、日高さんの証明は失敗です。

以上です。

340 名前:日高 [2020/11/22(日) 11:09:54.01 ID:RmMAvok9.net]
>322
整数解を持つはずのn=2でも有理数解を持たない(*)の形式の式において「有理数解を持たないこと」をいくら強調しても(**)の一般式において整数解がないことの根拠になり得ません。

x^2+y^2=(x+√3)^2は、(4)です。
√3=a2
a=√3/2となります。

341 名前:日高 [2020/11/22(日) 11:17:45.17 ID:RmMAvok9.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

342 名前:132人目の素数さん [2020/11/22(日) 11:32:40.95 ID:WvDZeHG7.net]
繰り返し長文コピペはよく異常性格者がやる手段ですね。スレ流しとも言われます。
自分に都合の悪いレスなどを画面から外れるようにするのが主な目的らしいです。

まー繰り返し失敗した証明をコピペしても、都合の悪いレスを視界から消しても失敗は失敗。何にも変わりませんけどね。

日高さんの証明は失敗です。

343 名前:日高 [2020/11/22(日) 11:59:11.52 ID:RmMAvok9.net]
>328
繰り返し長文コピペはよく異常性格者がやる手段ですね。スレ流しとも言われます。
自分に都合の悪いレスなどを画面から外れるようにするのが主な目的らしいです。

目的が、ちがいます。



344 名前:日高 [2020/11/22(日) 14:04:17.57 ID:RmMAvok9.net]
>324
それでは、ここで書き込みをするのは楽しいですか?

楽しいです。

345 名前:132人目の素数さん mailto:sage [2020/11/22(日) 14:06:48.37 ID:9aczCXYn.net]
楽しいんだwww

346 名前:132人目の素数さん mailto:sage [2020/11/22(日) 14:06:55.86 ID:uqfQ1ppJ.net]
>>330
> >324
> それでは、ここで書き込みをするのは楽しいですか?
>
> 楽しいです。
つまり、他人に迷惑をかけることに楽しみを覚えるということですか。ゴミですね。

347 名前:日高 [2020/11/22(日) 14:11:07.38 ID:RmMAvok9.net]
>332
つまり、他人に迷惑をかけることに楽しみを覚えるということですか。ゴミですね。

他人に迷惑をかけているでしょうか?

348 名前:132人目の素数さん mailto:sage [2020/11/22(日) 14:29:17.61 ID:uqfQ1ppJ.net]
>>333
> >332
> つまり、他人に迷惑をかけることに楽しみを覚えるということですか。ゴミですね。
>
> 他人に迷惑をかけているでしょうか?
当然。

349 名前:日高 [2020/11/22(日) 14:37:50.97 ID:RmMAvok9.net]
>334
> 他人に迷惑をかけているでしょうか?
当然。

どこで、迷惑をかけたでしょうか?

350 名前:132人目の素数さん mailto:sage [2020/11/22(日) 15:00:20.87 ID:VbPcds51.net]
https://twitter.com/fujitapiroc1964/status/1040151277055881217?s=21
このスレで妄言を垂れ流すだけならまだ良かったんだけどな……
(deleted an unsolicited ad)

351 名前:132人目の素数さん mailto:sage [2020/11/22(日) 15:07:15.34 ID:uqfQ1ppJ.net]
>>335
> >334
> > 他人に迷惑をかけているでしょうか?
> 当然。
>
> どこで、迷惑をかけたでしょうか?
過去ログ全部読めよ。

352 名前:132人目の素数さん mailto:sage [2020/11/22(日) 15:31:30.59 ID:AuPvANZA.net]
日高クンは>>327のような駄文を投稿すれば白髪交じりのティンポがフル勃起するのかも知れない。

だから楽しいのだろう。ということはやめろという方が無理だなあ。

353 名前:132人目の素数さん [2020/11/22(日) 15:38:38.59 ID:odCjhJjk.net]
オマンコは偉大だ



354 名前:日高 [2020/11/22(日) 16:11:48.37 ID:RmMAvok9.net]
>336
このスレで妄言を垂れ流すだけならまだ良かったんだけどな……

どこが、妄言でしょうか?

355 名前:日高 [2020/11/22(日) 16:13:35.06 ID:RmMAvok9.net]
>337
過去ログ全部読めよ。

なぜ、迷惑なのでしょうか?

356 名前:日高 [2020/11/22(日) 16:16:15.91 ID:RmMAvok9.net]
>338
駄文を投稿すれば

どの部分が、駄文なのでしょうか?

357 名前:日高 [2020/11/22(日) 16:18:50.04 ID:RmMAvok9.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

358 名前:132人目の素数さん mailto:sage [2020/11/22(日) 16:24:26.23 ID:uqfQ1ppJ.net]
>>341
> >337
> 過去ログ全部読めよ。
>
> なぜ、迷惑なのでしょうか?
全部読めよ。迷惑な理由も書いてあっただろうが。
まずはそれを理解した上で聞け。ゴミ。

359 名前:132人目の素数さん mailto:sage [2020/11/22(日) 16:31:55.24 ID:9sloYBti.net]
フェルマーの定理以外のことを聞いてもオウム返ししかできないんだな。
やっぱりBOTじゃないの?

360 名前:日高 [2020/11/22(日) 16:37:12.82 ID:RmMAvok9.net]
>344
全部読めよ。迷惑な理由も書いてあっただろうが。

迷惑な理由は、書いてなかったと、思います。

361 名前:日高 [2020/11/22(日) 16:39:36.51 ID:RmMAvok9.net]
>345
オウム返ししかできないんだな。

どの部分が、オウム返しでしょうか?

362 名前:132人目の素数さん mailto:sage [2020/11/22(日) 16:48:52.65 ID:uqfQ1ppJ.net]
>>346
> >344
> 全部読めよ。迷惑な理由も書いてあっただろうが。
>
> 迷惑な理由は、書いてなかったと、思います。
嘘ついて誤魔化すな。全部読み直して、全てのコメントを理解しなおしてから書き込め。ゴミ。

363 名前:日高 [2020/11/22(日) 16:51:26.98 ID:RmMAvok9.net]
>348
嘘ついて誤魔化すな。

嘘は、ついていないとおもいます。



364 名前:132人目の素数さん mailto:sage [2020/11/22(日) 17:04:06.51 ID:IU9r0nTr.net]
>>312
> (3)の解x,y,zが、整数比とならないので
(3)の解でyが有理数のときしか調べていないでしょ

x^3+4^3=(x+2)^3に対応する(3)はx^3+(2√3)^3=(x+√3)^3

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
y=2√3の場合は当てはまらないので整数比とならないことはいえない

365 名前:132人目の素数さん mailto:sage [2020/11/22(日) 17:05:26.56 ID:uqfQ1ppJ.net]
>>349
> >348
> 嘘ついて誤魔化すな。
>
> 嘘は、ついていないとおもいます。
ならば痴呆だな。
全て読み直して文章を理解し直してから返事しろ。

366 名前:132人目の素数さん mailto:sage [2020/11/22(日) 17:07:39.79 ID:AuPvANZA.net]
 日高クンに聞きたいのだが、全ての自然数と、全ての分数の数はどちらが多いと思う?

367 名前:日高 [2020/11/22(日) 17:40:00.51 ID:RmMAvok9.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

368 名前:132人目の素数さん mailto:sage [2020/11/22(日) 19:05:41.17 ID:AuPvANZA.net]
>>353
零点

[予想される質問]
 どの部分が零点でしょうか。

[回答]
 全部

369 名前:132人目の素数さん mailto:sage [2020/11/22(日) 19:18:16.48 ID:xpiO+Zk/.net]
>346 名前:日高[] 投稿日:2020/11/22(日) 16:39:36.51 ID:RmMAvok9 [21/23]
>>345
>オウム返ししかできないんだな。

>どの部分が、オウム返しでしょうか?

日高は悪意があってオウム返しやりまくってるな

370 名前:132人目の素数さん mailto:sage [2020/11/22(日) 19:54:44.73 ID:ATDrcQAI.net]
>>353 日高君

> (2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。

この言い方は紛らわしいからやめろって言ってるんだよ。
「x,y,zは整数比とならない」が「yが有理数のとき」に限るってことがわかりにくい。
「(3)はyが有理数のとき、x,zはともに有理数にはならない」とか、言い方を工夫しろよ。

371 名前:日高 [2020/11/22(日) 19:56:05.85 ID:RmMAvok9.net]
>350
x^3+4^3=(x+2)^3に対応する(3)はx^3+(2√3)^3=(x+√3)^3

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
y=2√3の場合は当てはまらないので整数比とならないことはいえない

x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
(a)のyを有理数とすると、x,yが整数比とならないので、
(b)のyを無理数とすると、x,yが整数比となりません。

372 名前:日高 [2020/11/22(日) 20:04:24.84 ID:RmMAvok9.net]
>352
日高クンに聞きたいのだが、全ての自然数と、全ての分数の数はどちらが多いと思う?

わかりません。

373 名前:132人目の素数さん mailto:sage [2020/11/22(日) 20:05:43.42 ID:ATDrcQAI.net]
>>357 日高
> x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
どういう意味で同じですか? 別の式に見えますが。



374 名前:日高 [2020/11/22(日) 20:06:13.08 ID:RmMAvok9.net]
>355
日高は悪意があってオウム返しやりまくってるな

オウム返しは、やっていません。

375 名前:132人目の素数さん mailto:sage [2020/11/22(日) 20:06:28.25 ID:IU9r0nTr.net]
>>357
> x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
> (a)のyを有理数とすると、x,yが整数比とならないので、
> (b)のyを無理数とすると、x,yが整数比となりません。

> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
これはa=1のときにyを有理数とするとxは無理数になるということ

(b)の場合はa=1のときだが(a)の場合はaは1でないのでaの値は変化している
(a)と(b)でaの値は同じではない

何度も指摘されているがおまえが理解できていないのは
a=1のときにyを無理数にした場合が検討されていないということなんだよ

376 名前:132人目の素数さん mailto:sage [2020/11/22(日) 20:15:19.68 ID:IU9r0nTr.net]
>>357
> x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
> (a)のyを有理数とすると、x,yが整数比とならないので、
> (b)のyを無理数とすると、x,yが整数比となりません。

> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(3)のyが無理数のときx,y,zが整数比となる イコール a=1としてyが無理数のときx,y,zが整数比となる
yが有理数のときに整数比となる場合 この場合のaの値を書け

yの値を変化させる方法は2通りある
(A) 解の比を変えないでaの値を変える
(B) aの値を変えないで解の比を変える

p=2の場合の具体例
x^2+y^2=(x+2)^2でy=4であればx=3,z=5で整数比でありこのときa=1
y=4をy=2√6に変えるとする

(A) 解の比を変えないでaの値を変える
a=1からa=√6/2に変えるとy=2√6になる
x=(3/2)*√6,z=(5/2)*√6となり解の比は変わらないから整数比のまま
ただしx=(3/2)*√6,y=2√6,z=(5/2)*√6はa=√6/2の場合つまりx^2+y^2=(x+√6)^2の解であり
a=1の場合つまりx^2+y^2=(x+2)^2の解=(3)の解ではない

(B) aの値を変えないで解の比を変える
a=1のままy=2√6にした場合は
x=5,z=7となりx:y:z=5:2√6:7となって解の比が変わり整数比でなくなる
x=5,y=2√6,z=7は当然a=1の場合つまりx^2+y^2=(x+2)^2の解=(3)の解である

377 名前:日高 [2020/11/22(日) 20:17:42.83 ID:RmMAvok9.net]
>356
「(3)はyが有理数のとき、x,zはともに有理数にはならない」とか、言い方を工夫しろよ。

同じことに、なります。

378 名前:132人目の素数さん mailto:sage [2020/11/22(日) 20:23:00.56 ID:ATDrcQAI.net]
>>363 日高
> >356
> 「(3)はyが有理数のとき、x,zはともに有理数にはならない」とか、言い方を工夫しろよ。
>
> 同じことに、なります。

同じじゃねーよ。「(3)は」「x,y,zは整数比とならない」と紛らわしいからやめろと言ってるんだ。

379 名前:日高 [2020/11/22(日) 20:46:54.69 ID:RmMAvok9.net]
>359
> x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
どういう意味で同じですか? 別の式に見えますが。

x^3+4^3=(x+2)^3の両辺に、(√3/2)^p

380 名前:を、掛けると、X^3+(2√3)^3=(X+√3)^3
となります。
[]
[ここ壊れてます]

381 名前:132人目の素数さん mailto:sage [2020/11/22(日) 20:52:53.27 ID:ATDrcQAI.net]
>>365 日高
> >359
> > x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。
> どういう意味で同じですか? 別の式に見えますが。
>
> x^3+4^3=(x+2)^3の両辺に、(√3/2)^pを、掛けると、X^3+(2√3)^3=(X+√3)^3
> となります。

xがXに変わっているだろうが。このゴマカシ野郎。

382 名前:日高 [2020/11/22(日) 20:59:02.05 ID:RmMAvok9.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

383 名前:132人目の素数さん mailto:sage [2020/11/22(日) 21:01:42.19 ID:AuPvANZA.net]
 やはり日高クンは >>313


 p と q は互いに素な自然数とする。p と q が奇数のとき
  p^4 + q^4 = r^2
を満たす自然数 r は存在しないことを証明する。


ぐらいの問題を解けるようになってから、フェルマーの最終定理に取り組もう。
 こういうやさしめの整数問題は予備知識も少なくていいし、「数学的論理力」を
養うのにもってこいだ。

 もし、解けるようになったらここの住人も少しは見直すだろう。

 そしてキミも自分の愚かさに気づくだろう。

 もうキミも老い先は短いのだから、せめて、この世にいる間に自分の愚かさに気づく
ことを期待する



384 名前:132人目の素数さん [2020/11/23(月) 05:14:27.03 ID:qVoQh2Vz.net]
自分が思うには日高さんは小学1年生の国語ドリルから勉強するのが良いと思うんですよ。

>>320の「わからない」って回答見てそう思ったんです。考えを聞かれて「わからない」って答えるのって幼稚園児とか小学低学年とかでしょう? テレビインタビューで「僕どう思う?」って聞かれて沈黙して「わからない…」って答えるよくある光景。アレですよ。まさか大の大人で、それもフェルマーの最終定理証明したって言い張ってる人の口から出る言葉じゃありませんよ。

日高さんにはまず言語能力が足りない。だから文章でうまく表現できないし、指摘された事も理解もできない。土台が無い状態なので何やってもダメな状態なんですよ。きっと日常生活でもトラブル起きまくりでしょう。
まずは言語を覚えて、それから論理を身につけましょう。論理を身につけないで証明なんてできないんです。

>>311を見てくださいよ。教科書に出てくるような三段論法です。aはbである。cはaである。故にcはbである。
a=誰も納得しない証明
b=失敗
c=日高さんの証明
この基礎の基礎を日高さんは>>318で「理解できません」って言っちゃったんですよ。この基礎の基礎の三段論法を理解できないなら、世の中の事なーんにも理解できませんよ。論理が通じないなら、虫や動物と一緒です。日高さんは虫や動物レベルなんです。言葉が通じない。論理が通じないからです。

ですから、まずは小学1年生の国語ドリルから始めましょう。日高さん。もしかしたらまだ間に合うかもしれませんから。

385 名前:132人目の素数さん mailto:sage [2020/11/23(月) 05:29:00.09 ID:EjA45M7q.net]
たぶん相当高齢だとおもう
若かったらここまで頑固じゃないだろ
聞き耳を持たないとかいうレベルじゃない
認知症に片足つっこんでる状態

386 名前:日高 [2020/11/23(月) 06:19:33.11 ID:K5hJE4wv.net]
>366
x^3+4^3=(x+2)^3の両辺に、(√3/2)^pを、掛けると、X^3+(2√3)^3=(X+√3)^3
となります。

xがXに変わっているだろうが。このゴマカシ野郎。

y/x=Y/Xとなります。

387 名前:日高 [2020/11/23(月) 06:26:53.96 ID:K5hJE4wv.net]
>361
何度も指摘されているがおまえが理解できていないのは
a=1のときにyを無理数にした場合が検討されていないということなんだよ

a=1のときにyを無理数にした場合

388 名前:日高 [2020/11/23(月) 06:29:21.60 ID:K5hJE4wv.net]
>372
>361
何度も指摘されているがおまえが理解できていないのは
a=1のときにyを無理数にした場合が検討されていないということなんだよ

a=1のときにyを無理数にした場合は、(b)となります。

389 名前:日高 [2020/11/23(月) 06:44:32.45 ID:K5hJE4wv.net]
>362
(3)のyが無理数のときx,y,zが整数比となる イコール a=1としてyが無理数のときx,y,zが整数比となる
yが有理数のときに整数比となる場合 この場合のaの値を書け

(3)のyが無理数のときx,y,zが整数比となる場合は、ありません。

390 名前:132人目の素数さん [2020/11/23(月) 06:45:16.78 ID:3KhI9Ukn.net]
>>318 ってトンデモナイ事平然と書いてるな。
証明の失敗は、失敗を証明することによって決まるだってさw
失敗の証明の失敗を指摘したら、失敗の証明の失敗の証明をするの?
この人ループさせるの好きだよな。
ルーピーってあだ名ついちゃうよw

391 名前:日高 [2020/11/23(月) 06:46:36.35 ID:K5hJE4wv.net]
>368
 p と q は互いに素な自然数とする。p と q が奇数のとき
  p^4 + q^4 = r^2
を満たす自然数 r は存在しないことを証明する。

わかりません。

392 名前:日高 [2020/11/23(月) 06:47:33.24 ID:K5hJE4wv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

393 名前:日高 [2020/11/23(月) 06:50:29.65 ID:K5hJE4wv.net]
>369
自分が思うには日高さんは小学1年生の国語ドリルから勉強するのが良いと思うんですよ。

376についての、ご指摘をお願いします。



394 名前:日高 [2020/11/23(月) 06:52:31.55 ID:K5hJE4wv.net]
>370
たぶん相当高齢だとおもう
若かったらここまで頑固じゃないだろ
聞き耳を持たないとかいうレベルじゃない
認知症に片足つっこんでる状態

376についての、ご指摘をお願いします。

395 名前:日高 [2020/11/23(月) 06:54:34.81 ID:K5hJE4wv.net]
>375
証明の失敗は、失敗を証明することによって決まるだってさw
失敗の証明の失敗を指摘したら、失敗の証明の失敗の証明をするの?
この人ループさせるの好きだよな。
ルーピーってあだ名ついちゃうよw

376についての、ご指摘をお願いします。

396 名前:132人目の素数さん mailto:sage [2020/11/23(月) 07:21:27.33 ID:lJF2qN2S.net]
修正しようが何だろうが、今までのだって正しいと言い張っているんだろ。
それなら、今までの指摘は有効。
それを放置して修正したものを指摘してくれとか誤魔化すな。

指摘に対して誤魔化さずに返信しなおせ。

397 名前:132人目の素数さん mailto:sage [2020/11/23(月) 07:26:54.63 ID:lJF2qN2S.net]
>>318
> >311
> 誰も納得しない証明は失敗です。
> 証明の失敗は客観的に決まります。
>
> 理解できません。
> 証明の失敗は、その失敗を証明することによって、決まるとおもいます。
まともな証明が出来ない人が自分の考えを述べる権利はありません。
思い込みと妄想しか出てこないので。

成功していないのは全て失敗です。
誰も納得できないのは、成功ではありません。

398 名前:132人目の素数さん mailto:sage [2020/11/23(月) 08:14:00.95 ID:lvm6LjsX.net]
>>377
零点。数学の証明になっていない。

[予想される質問]
 どの部分が「数学の証明になっていない」のでしょうか。

[回答]
 全部

399 名前:日高 [2020/11/23(月) 08:28:04.74 ID:K5hJE4wv.net]
>381
指摘に対して誤魔化さずに返信しなおせ。

何番に、返信すればよいのでしょうか?

400 名前:日高 [2020/11/23(月) 08:30:27.82 ID:K5hJE4wv.net]
>382
成功していないのは全て失敗です。
誰も納得できないのは、成功ではありません。

成功が、目的ではありません。
指摘を、望んでいます。

401 名前:日高 [2020/11/23(月) 08:32:03.91 ID:K5hJE4wv.net]
>383
零点。数学の証明になっていない。

理由を、お聞かせ下さい。

402 名前:日高 [2020/11/23(月) 08:32:45.17 ID:K5hJE4wv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

403 名前:132人目の素数さん [2020/11/23(月) 08:44:32.78 ID:3KhI9Ukn.net]
今まで散々指摘してもらったのに礼も言わず、まともな指摘が無いからとかホザイていたのに、指摘をお願いしますだってさw
人間としておかしい。



404 名前:132人目の素数さん mailto:sage [2020/11/23(月) 08:46:07.71 ID:lJF2qN2S.net]
>>384
> >381
> 指摘に対して誤魔化さずに返信しなおせ。
>
> 何番に、返信すればよいのでしょうか?
おまえが短文で誤魔化した指摘全てだよ。当たり前だろうが。

405 名前:132人目の素数さん [2020/11/23(月) 08:47:16.49 ID:3KhI9Ukn.net]
証明を目的としないってスレタイ詐欺だな。
スレ閉じなさいよ。

406 名前:132人目の素数さん mailto:sage [2020/11/23(月) 08:49:46.43 ID:lJF2qN2S.net]
>>385
> >382
> 成功していないのは全て失敗です。
> 誰も納得できないのは、成功ではありません。
>
> 成功が、目的ではありません。
オマエの目的なんか聞いてねえよ。誤魔化すな。

間違いを間違いと認められるだけの能力が無いなら、目的を達成するのは絶対に不可能だ。消えろ。

407 名前:日高 [2020/11/23(月) 08:51:59.02 ID:K5hJE4wv.net]
>388
今まで散々指摘してもらったのに礼も言わず、

何番の方に、礼を言えばよいのでしょうか?

408 名前:日高 [2020/11/23(月) 08:53:57.49 ID:K5hJE4wv.net]
>389
> 何番に、返信すればよいのでしょうか?
おまえが短文で誤魔化した指摘全てだよ。当たり前だろうが。

何番で、誤魔化したでしょうか?

409 名前:日高 [2020/11/23(月) 08:57:12.37 ID:K5hJE4wv.net]
>390
スレ閉じなさいよ。

理由を、お聞かせ下さい。

410 名前:日高 [2020/11/23(月) 08:59:15.94 ID:K5hJE4wv.net]
>391
間違いを間違いと認められるだけの能力が無いなら、目的を達成するのは絶対に不可能だ。消えろ。

理由を、お聞かせ下さい。

411 名前:132人目の素数さん [2020/11/23(月) 09:01:41.11 ID:3KhI9Ukn.net]
>>392 アナタほんとに脳の検査受けた方がいいよ。あなたが今しなきゃいけないのはフェルマーの証明ごっこじゃなく、認知症じゃない事を証明することなんじゃないの?医者に行って診断書かいてもらいなよ。
そしてもし、認知症だったらフェルマーの証明はいいから治療に励めよ。

412 名前:132人目の素数さん [2020/11/23(月) 09:03:26.75 ID:3KhI9Ukn.net]
>>394 スレタイ詐欺は迷惑行為だから

413 名前:日高 [2020/11/23(月) 09:06:52.18 ID:K5hJE4wv.net]
>396
アナタほんとに脳の検査受けた方がいいよ。

ご心配ありがとうございます。
ご指摘頂けないということでしょうか?



414 名前:132人目の素数さん [2020/11/23(月) 09:07:56.91 ID:3KhI9Ukn.net]
>>398 指摘は「医者に行きな」だよ。

415 名前:日高 [2020/11/23(月) 09:08:10.50 ID:K5hJE4wv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

416 名前:日高 [2020/11/23(月) 09:09:38.98 ID:K5hJE4wv.net]
>399
指摘は「医者に行きな」だよ。

ご心配ありがとうございます。

417 名前:132人目の素数さん [2020/11/23(月) 09:40:28.26 ID:3KhI9Ukn.net]
じゃあ、この後は日高さんが医者に行って診断書で認知症あるいはアルツハイマー症などの脳に異常がない事を証明してから進行するって事でいい?
で、脳に異常があった場合はスレ閉じて治療に専念。
脳に異常が無く、フェルマーの定理の証明の成功を目指さず、指摘だけを受ける場合はスレタイ詐欺なのでスレを閉じる。
脳に異常が無く、フェルマーの定理の証明の成功を目指すが失敗した(論理破綻を指摘され概ね1ヶ月以内にそれを解消できない)場合はスレを閉じる。
こういう事でいいかな?

418 名前:日高 [2020/11/23(月) 09:43:50.24 ID:K5hJE4wv.net]
>402
じゃあ、この後は日高さんが医者に行って診断書で認知症あるいはアルツハイマー症などの脳に異常がない事を証明してから進行するって事でいい?

理由を、お聞かせ下さい。

419 名前:132人目の素数さん [2020/11/23(月) 09:47:18.08 ID:3KhI9Ukn.net]
病気では身体に負荷がかかって病状悪化するし、まともな議論

420 名前:にならんから当たり前だろ。 []
[ここ壊れてます]

421 名前:日高 [2020/11/23(月) 09:56:15.31 ID:K5hJE4wv.net]
>404
病気では身体に負荷がかかって病状悪化するし、まともな議論にならんから当たり前だろ。

心遣いありがとうございます。

422 名前:132人目の素数さん [2020/11/23(月) 09:59:12.81 ID:3KhI9Ukn.net]
>>405 じゃ、そういう事で。

423 名前:132人目の素数さん mailto:sage [2020/11/23(月) 12:01:16.72 ID:lJF2qN2S.net]
>>393
> >389
> > 何番に、返信すればよいのでしょうか?
> おまえが短文で誤魔化した指摘全てだよ。当たり前だろうが。
>
> 何番で、誤魔化したでしょうか?
一文で返信したものは全て誤魔化し。やり直し。
二度と聞くな。



424 名前:132人目の素数さん mailto:sage [2020/11/23(月) 12:14:08.23 ID:FMzpLP2C.net]
病院は今日は休みだから、明日からかな。

425 名前:日高 [2020/11/23(月) 12:46:53.65 ID:K5hJE4wv.net]
>408
病院は今日は休みだから

ご心配ありがとうございます。

426 名前:日高 [2020/11/23(月) 12:47:58.38 ID:K5hJE4wv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

427 名前:132人目の素数さん mailto:sage [2020/11/23(月) 12:50:31.34 ID:FMzpLP2C.net]
>>409
> >408
> 病院は今日は休みだから
>
> ご心配ありがとうございます。

証明貼ってる余裕あるの?病院の予約取った?

428 名前:日高 [2020/11/23(月) 13:27:50.60 ID:K5hJE4wv.net]
>411
証明貼ってる余裕あるの?病院の予約取った?

ご心配ありがとうございます。

429 名前:132人目の素数さん mailto:sage [2020/11/23(月) 14:18:13.07 ID:lvm6LjsX.net]
>>410
 内容的には

  6÷2×3 = 1

に匹敵するようなすばらしい証明ですね。

430 名前:日高 [2020/11/23(月) 14:34:34.32 ID:K5hJE4wv.net]
>413
 内容的には

  6÷2×3 = 1

に匹敵するようなすばらしい証明ですね。

どういう意味でしょうか?

431 名前:132人目の素数さん mailto:sage [2020/11/23(月) 14:45:11.33 ID:lvm6LjsX.net]
日高さんは窪田登司氏の親戚筋の方ですか。年齢的にはほぼ同じなのかと拝察いたしますが。

432 名前:132人目の素数さん mailto:sage [2020/11/23(月) 14:46:46.62 ID:4w2qau4p.net]
いくつ前のスレだったか忘れたが
みんなが沈黙したら日高の書き込みも止まったことがあった。
まわりが沈黙したからと勝利宣言するような頭はないらしい。
沈黙してみるのも一つの方法。

左辺がx^n+y^nであることを使っていないから絶対に正しい証明にはならない。
いままでどおり、適当に反論して反応を楽しむのもありだとは思うけどね。

433 名前:日高 [2020/11/23(月) 14:54:34.30 ID:K5hJE4wv.net]
>415
日高さんは窪田登司氏の親戚筋の方ですか。

いいえ。



434 名前:日高 [2020/11/23(月) 14:57:20.57 ID:K5hJE4wv.net]
>416
左辺がx^n+y^nであることを使っていないから絶対に正しい証明にはならない。

よく意味がわかりません。教えてください。

435 名前:132人目の素数さん mailto:sage [2020/11/23(月) 17:13:47.19 ID:lvm6LjsX.net]
よく意味がわからなくていいんですよ。

ここ、数学のスレではなくて世間話のスレなのですから。

436 名前:日高 [2020/11/23(月) 17:26:22.02 ID:K5hJE4wv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

437 名前:日高 [2020/11/23(月) 17:29:18.13 ID:K5hJE4wv.net]
>419
ここ、数学のスレではなくて世間話のスレなのですから。

数学だと思います。

438 名前:132人目の素数さん mailto:sage [2020/11/23(月) 17:52:21.34 ID:7xikQ1GW.net]
>>419
日高さんへの質問コーナーでもやりますか。
まともな答えは返ってこないだろうけど。

439 名前:132人目の素数さん mailto:sage [2020/11/23(月) 17:54:01.25 ID:uEcH/niQ.net]
>>373
> a=1のときにyを無理数にした場合は、(b)となります。
x^3+(2√3)^3=(x+√3)^3…(b)は(3)でy=2√3(無理数)とした場合
おまえは
> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる
a=1のときにyが有理数のときxは無理数となるのでx,y,zは整数比とならない
としか示していない
a=1のときにyが無理数のときはx,y,zが整数比となるならばyが有理数のときに整数比となる
だからa=1のときにyが無理数のときx,y,zが整数比とならないことは
おまえは証明していない

440 名前:132人目の素数さん mailto:sage [2020/11/23(月) 17:55:13.15 ID:uEcH/niQ.net]
>>374
[A] (3)つまりa=1のときyが有理数のときx,y,zは整数比とならない
この時点ではa=1のときにyを無理数にした場合は証明されていない

[B] (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる
> yが有理数のときに整数比となる場合 この場合のaの値を書け
このaの値を元にしないとしないと(3)のyが無理数のときx,y,zが整数比となる場合は
証明できないはずだろ
この時点でもa=1のときにyを無理数にした場合は証明されていない

なぜこの時点で
> (3)のyが無理数のときx,y,zが整数比となる場合は、ありません。
が言えるのか?
おまえがこう書き込む理由はWilesが証明したからだろ
おまえが証明したわけではないからおまえの証明は失敗している

441 名前:日高 [2020/11/23(月) 18:29:58.42 ID:K5hJE4wv.net]
>423
a=1のときにyが無理数のときはx,y,zが整数比となるならばyが有理数のときに整数比となる
だからa=1のときにyが無理数のときx,y,zが整数比とならないことは
おまえは証明していない

(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数)

442 名前:132人目の素数さん mailto:sage [2020/11/23(月) 18:32:47.54 ID:lvm6LjsX.net]
>420

 支那とロシアが国連人権理事国になったようなものですね。

443 名前:132人目の素数さん mailto:sage [2020/11/23(月) 18:34:01.70 ID:TLKudgKa.net]
>>420
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる[。]

ので,整数比の解は存在します,というのがここでいいたいことじゃないんですよね。
ので,整数比の解は存在しない,んですか?


そして,どの式が整数比になるんですか。
(4)ですか(3)ですか?
この後に省略されている日本語は何ですか?

日本語はおわかりになるんでしょう?
あなたの日本語は,語数が少なすぎて両義に取れる場合が多すぎます。
もう少し日本語を追加しましょうよ。



444 名前:132人目の素数さん mailto:sage [2020/11/23(月) 18:54:43.39 ID:Du9PXAGx.net]
>>425
> (sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数
このときのaの値は?
(sw)^p+(tw)^p=(uw)^pのaの値は?
s^p+t^p=u^pのaの値は?

a=1のときにyが無理数のときx,y,zが整数比とならないことは
a=1のときにy=tw(無理数)ならば(sw)^p+(tw)^pと(uw)^pが決して一致しない
ということだから
(sw)^p+(tw)^p=(uw)^pとなるならばs^p+t^p=u^pとなる
と何度書いても証明になっていないだろ
x=sw,y=tw,z=uwは次のような形になることが分かり
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (s,tは有理数)
は整数比の解に可能性があるx,y,zであって
a=1とすればx,y,zは無理数でありr=z-x=p^{1/(p-1)}になる
(ap)^{1/(p-1)}が有理数ならx,y,zは有理数
この解が(4)を満たすかどうかはおまえの証明では示せない

445 名前:132人目の素数さん mailto:sage [2020/11/23(月) 19:21:24.05 ID:TLKudgKa.net]
日高さん,我々にははほんとにわからないんですよ

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数)

なんでこう書くと,yが無理数のときx,y,zが整数比とならないことの証明になるんですか?
(3)には整数比となる無理数解がないことを証明しなければなりません,と指摘され続けるのは

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^p (s,t,uは有理数、wは無理数)

まさに,この式が成立してしまい,フェルマーの最終定理には反例があることになるからです。
上の式が成り立つことが明白だから,それはまずいだろうから,どうするのかその対策を聞かれているんです。

フェルマーの最終定理には反例がない [s^p+t^p=u^p (s,t,uは有理数)は成立しない] ことを知っているならば,上のように書いて
「だから整数比となる無理数解はありません」といえます。
でもそうじゃないでしょう?
いまフェルマーの最終定理を証明している最中ではありませんか。

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数)

この内容が整数比となる無理数解がないことの証明である根拠を,言葉を惜しまずに説明して下さい。
できなければ【証明】はどう見ても失敗です。

もはや,このスレでの成功にもまったく期待されていないかも知れませんが,そうなると【証明】を書き込み続けられる動機が不明です。
一緒になって数学お遊戯につきあって遊んであげている我々が悪いんでしょうか?

どう思われます?

446 名前:132人目の素数さん mailto:sage [2020/11/23(月) 19:28:14.22 ID:kIIIDatJ.net]
>>418 日高
> >416
> 左辺がx^n+y^nであることを使っていないから絶対に正しい証明にはならない。
>
> よく意味がわかりません。教えてください。

日高氏の証明は両辺が斉次式であることしか使っていない。
よって、日高氏の証明が正しいならx^3+7y^3=z^3やx^3+8y^3=z^3にも自然数解がないことが証明できる。
前者は(x,y,z)=(1,1,2)が自然数解。後者は自分で考えてくれ。

「式が違います」でごまかそうとするんだろうが
(A) x^3+y^3=z^3
(B) x^3+7y^3=z^3
(C) x^3+8y^3=z^3
(A)と(B)は違う式,(B)と(C)は違う式,(C)と(A)も違う式だ。

447 名前:132人目の素数さん mailto:sage [2020/11/23(月) 19:29:46.84 ID:kIIIDatJ.net]
>>420 日高
数学したいらしいから、数学らしからぬところを指摘しよう。

>(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。

(3)は式なので「x,y,zは整数比とならない」で受けるのはおかしいよ。
そんなふうに書いている数学書、ある?

448 名前:日高 [2020/11/23(月) 21:33:46.62 ID:K5hJE4wv.net]
修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

449 名前:132人目の素数さん mailto:sage [2020/11/23(月) 23:51:16.37 ID:3G03ZYXw.net]
>>432

(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
式で書くと、
(sw)^n+(tw)^n=(uw)^nとなるならば、s^n+t^n=u^nとなる。(s,t,uは有理数、wは無理数)
r=u-sとすると、このrは有理数で、n>2のときr^(n-1)=nをみたさないので、x=s,y=t,z=uは(3)の解でなく(4)の解である。

(4)の解は(3)の解のa^{1/(n-1)}倍となるので、(4)の解がx=s,y=t,z=uのとき、(3)の解はx=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}である。
さっきのrとは別に、r=z-x=u/a^{1/(n-1)}-s/a^{1/(n-1)}を考えると、このx、y、zは(3)の解なのでr^(n-1)=nをみたす。
r^(n-1)=nにr=u/a^{1/(n-1)}-s/a^{1/(n-1)}を代入して
((u-s)/a^{1/(n-1)})^(n-1)=n
((u-s)^(n-1))/a=n
a=((u-s)^(n-1))/n
(3)の解x=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}にこのaを代入して、改めて書き直すと
(3)の解はx=s(n^{1/(n-1)})/(u-s),y=t(n^{1/(n-1)})/(u-s),z=u(n^{1/(n-1)})/(u-s)

n>2のとき、(n^{1/(n-1)}は必ず無理数、よってy=t(n^{1/(n-1)})/(u-s)は必ず無理数

(4)のyが有理数で解が整数比となるとき、(3)のyは必ず無理数となる。

(3)のyが無理数のとき、x,y,zが整数比となるかどうかは、調べていない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となるが、(4)のyが有理数のときに(4)のx,y,zが整数比となるかどうかは調べていない。
(4)のyが有理数で解が整数比となるとき、(3)のyは必ず無理数となるが、(3)のyが無理数の場合は、調べていない。

どの場合も調べていないので、証明は失敗です。

450 名前:日高 [2020/11/24(火) 06:17:26.82 ID:5JQp7zxv.net]
>424
> yが有理数のときに整数比となる場合 この場合のaの値を書け

n≧3の場合、該当するaは、ありません。

451 名前:日高 [2020/11/24(火) 06:22:27.65 ID:5JQp7zxv.net]
>425
だからa=1のときにyが無理数のときx,y,zが整数比とならないことは
おまえは証明していない

s^p+t^p=u^pとならないので、(sw)^p+(tw)^p=(uw)^pとなりません。

452 名前:日高 [2020/11/24(火) 06:23:41.12 ID:5JQp7zxv.net]
>426
支那とロシアが国連人権理事国になったようなものですね。

どういう意味でしょうか?

453 名前:日高 [2020/11/24(火) 06:29:01.65 ID:5JQp7zxv.net]
>427
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる[。]

ので,整数比の解は存在します,というのがここでいいたいことじゃないんですよね。
ので,整数比の解は存在しない,んですか?

yが有理数のときにx,y,zが整数比とならないので、yが無理数のときも、x,y,zは整数比となりません。



454 名前:132人目の素数さん mailto:sage [2020/11/24(火) 07:26:27.68 ID:Ye2bgd72.net]
>>437
次の質問に数値,数式ではなく,日本語でお答え下さい。
この質問にはいつも(4)でのaの値を計算して返されるのですが,聞きたいのはaの値ではありません。

n>=2のとき,x^n+y^n=(x+√3)^n は有理数解を持ちません。
この事自体は完全に正しいです。
しかし,あなたはここからn=2の場合を除外して,n>=3の場合について

>yが有理数のときにx,y,zが整数比とならないので,yが無理数のときもx,y,zは整数比とならない

という結論を導き出します。しかし,
n=2のときには,x^n+y^n=(x+√3)^n には有理数解はありませんが,整数比となる無理数解(4√3,3√3,5√3)という反例があります。
これと同じように,例えばn=3のとき,n=101のとき,n=65536のとき,n=...のときに,解が整数比となる反例が出現しないという理由は何ですか。

繰り返しますがそうなる理由を説明して下さい。
(4)でのaの値は,n=2のときにはこうなります,n=3のときには・・・・とかの計算の結果を聞いているのではありません。

455 名前:日高 [2020/11/24(火) 07:36:19.47 ID:5JQp7zxv.net]
>438
n=2のときには,x^n+y^n=(x+√3)^n には有理数解はありませんが,整数比となる無理数解(4√3,3√3,5√3)という反例があります。

解(4√3,3√3,5√3)があるならば、解(4,3,5)があります。
解(4√3,3√3,5√3)がないならば、解(4,3,5)もありません。

456 名前:132人目の素数さん mailto:sage [2020/11/24(火) 07:40:39.53 ID:u3fs9VFe.net]
あるならある、ないならない、としか言ってない。

457 名前:ID:1lEWVa2s mailto:sage [2020/11/24(火) 07:51:50.17 ID:0slwwBrx.net]
>>439
確かに。気付かなかった。仕事から帰ったらメモっとく。

458 名前:ID:1lEWVa2s mailto:sage [2020/11/24(火) 07:54:45.93 ID:0slwwBrx.net]
if ψ 4√3,3√3,5√3 ⇒! 4,3,5
かっこよくしてみた。

459 名前:132人目の素数さん mailto:sage [2020/11/24(火) 07:55:59.01 ID:u3fs9VFe.net]
>>440
あと、主張している命題をすり替えているな。

460 名前:日高 [2020/11/24(火) 08:04:18.58 ID:5JQp7zxv.net]
>428
> (sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数
このときのaの値は?
p=2ならば、a=1
p≧3ならば、w=a^{1/(p-1)}、a=w^(p-1)

(sw)^p+(tw)^p=(uw)^pのaの値は?

p=2ならば、a=w
p≧3ならば、aは存在しません。

s^p+t^p=u^pのaの値は?

p=2ならば、a=1
p≧3ならば、aは存在しません。

461 名前:日高 [2020/11/24(火) 08:12:56.93 ID:5JQp7zxv.net]
>429
>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数)

この内容が整数比となる無理数解がないことの証明である根拠を,言葉を惜しまずに説明して下さい。

s^p+t^p=u^pとならないので、(sw)^p+(tw)^p=(uw)^pとならない。

462 名前:132人目の素数さん mailto:sage [2020/11/24(火) 08:15:16.61 ID:Ye2bgd72.net]
>>439
なるほど!
気付きませんでした!!
反例を見つけたら除外すればいいわけですね!!!

でも,反例が生じうる命題の主張は,数学では証明とは呼びません。
そうゆうのは「予想」と呼ばれます。
フェルマーの最終定理は真である,との予想ですか。

いや,初めて全面的に賛成できますね。
日高さん,私もフェルマーの最終定理は成り立つ,と確信を持って予想してますよ。

463 名前:日高 [2020/11/24(火) 08:15:21.98 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。



464 名前:132人目の素数さん mailto:sage [2020/11/24(火) 08:18:49.11 ID:Ye2bgd72.net]
>>445
それは,フェルマーの最終定理が成り立つから,(3)には整数比となる無理数解がない,といってるだけでしょう。

で,あなたは【証明】でなにをやりたいんですか。

あ,証明ではなくて予想でしたね。
すみません。
はい,私も

>s^p+t^p=u^pとならないので、(sw)^p+(tw)^p=(uw)^pとならない。

は正しく,真なる命題であろう,と確信を持って予想してます。

465 名前:132人目の素数さん mailto:sage [2020/11/24(火) 08:20:30.54 ID:AFUESiB3.net]
>>434
> >424
> > yが有理数のときに整数比となる場合 この場合のaの値を書け
>
> n≧3の場合、該当するaは、ありません。
なぜ証明していないのに該当するaがないことが分かるの?

>>435
> s^p+t^p=u^pとならない
なぜ証明していないのにs^p+t^p=u^pとならないことが分かるの?

466 名前:日高 [2020/11/24(火) 08:21:09.08 ID:5JQp7zxv.net]
>430
「式が違います」でごまかそうとするんだろうが
(A) x^3+y^3=z^3
(B) x^3+7y^3=z^3
(C) x^3+8y^3=z^3
(A)と(B)は違う式,(B)と(C)は違う式,(C)と(A)も違う式だ。

(A)と(B)(C)は、同じ式ではありません。

467 名前:132人目の素数さん mailto:sage [2020/11/24(火) 08:29:59.36 ID:AFUESiB3.net]
>>444
> >428
> > (sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。(s,t,uは有理数、wは無理数
> このときのaの値は?
> p=2ならば、a=1
> p≧3ならば、w=a^{1/(p-1)}、a=w^(p-1)
>
> (sw)^p+(tw)^p=(uw)^pのaの値は?
>
> p=2ならば、a=w
> p≧3ならば、aは存在しません。
>
> s^p+t^p=u^pのaの値は?
>
> p=2ならば、a=1
> p≧3ならば、aは存在しません。
ウソばっか

正しい計算(Hidaka-free)は
p=2なら(sw)^p+(tw)^p=(uw)^pのaの値は
(u-s)w=2aだからa=(1/2)(u-s)w
s^p+t^p=u^pのaの値は
u-s=2aだからa=(1/2)(u-s)
p=3なら
(sw)^3+(tw)^3=(uw)^3のaの値は
(u-s)w=(3a)^{1/2}だからa=(1/3)((u-s)w)^2
s^3+t^3=u^3のaの値は
u-s=(3a)^{1/2}だからa=(1/3)(u-s)^2
...

468 名前:

(sw)^p+(tw)^p=(uw)^pのaの値は
(u-s)w=(ap)^{1/(p-1)}だからa=(1/p)((u-s)w)^(p-1)
s^p+t^p=u^pのaの値は
u-s=(ap)^{1/(p-1)}だからa=(1/p)(u-s)^(p-1)
[]
[ここ壊れてます]

469 名前:日高 [2020/11/24(火) 08:30:27.71 ID:5JQp7zxv.net]
>431
(3)は式なので「x,y,zは整数比とならない」で受けるのはおかしいよ。
そんなふうに書いている数学書、ある?

わかりません。

470 名前:132人目の素数さん mailto:sage [2020/11/24(火) 08:42:48.78 ID:/hTWbi+0.net]
>>444
a=1のときにyが無理数のときx,y,zが整数比とならないことは
a=1のときにy=tw(無理数)ならば(sw)^p+(tw)^pと(uw)^pが決して一致しない
ということだから
(sw)^p+(tw)^p=(uw)^pとなるならばs^p+t^p=u^pとなる
と何度書いても証明になっていないだろ
x=sw,y=tw,z=uwは次のような形になることが分かり
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (s,tは有理数)
は整数比の解に可能性があるx,y,zであって
a=1とすればx,y,zは無理数でありr=z-x=p^{1/(p-1)}になる
(ap)^{1/(p-1)}が有理数ならx,y,zは有理数
この解が(4)を満たすかどうかはおまえの証明では示せない

471 名前:132人目の素数さん [2020/11/24(火) 08:46:36.57 ID:PYa2wXWh.net]
>>439
>n=2のときには,x^n+y^n=(x+√3)^n には有理数解はありませんが,整数比となる無理数解(4√3,3√3,5√3)という反例があります。

>解(4√3,3√3,5√3)があるならば、解(4,3,5)があります。
>解(4√3,3√3,5√3)がないならば、解(4,3,5)もありません。

質問です。
方程式は(1)〜(4)まであります。
(どの方程式の)解(4√3,3√3,5√3)があるならば、(どの方程式の)解(4,3,5)があり、
(どの方程式の)解(4√3,3√3,5√3)がないならば、(どの方程式の)解(4,3,5)もないんですか?

472 名前:日高 [2020/11/24(火) 08:49:21.88 ID:5JQp7zxv.net]
>433
(4)のyが有理数で解が整数比となるとき、(3)のyは必ず無理数となる。

(3)のyが無理数のとき、x,y,zが整数比となるかどうかは、調べていない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となるが、(4)のyが有理数のときに(4)のx,y,zが整数比となるかどうかは調べていない。
(4)のyが有理数で解が整数比となるとき、(3)のyは必ず無理数となるが、(3)のyが無理数の場合は、調べていない。

どの場合も調べていないので、証明は失敗です。

(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のとき、x,y,zが整数比となります。
(4)のx,y,zは、(3)のx,y,zの定数倍となります。

473 名前:日高 [2020/11/24(火) 08:52:32.49 ID:5JQp7zxv.net]
>440
あるならある、ないならない、としか言ってない。

「あるならば、」と言っています。



474 名前:日高 [2020/11/24(火) 08:53:24.46 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

475 名前:日高 [2020/11/24(火) 08:56:42.73 ID:5JQp7zxv.net]
>443
あと、主張している命題をすり替えているな。

どの部分のことでしょうか?

476 名前:日高 [2020/11/24(火) 08:59:21.71 ID:5JQp7zxv.net]
>446
なるほど!
気付きませんでした!!
反例を見つけたら除外すればいいわけですね!!!

でも,反例が生じうる命題の主張は,数学では証明とは呼びません。
そうゆうのは「予想」と呼ばれます。
フェルマーの最終定理は真である,との予想ですか。

よく意味がわかりません。

477 名前:132人目の素数さん mailto:sage [2020/11/24(火) 09:24:31.70 ID:Ye2bgd72.net]
>>459
あなたの【証明】は肝心な部分が抜けているのでせいぜい【予想】でしかないということです。

あなたにとって【証明】が証明ならばそれでよいのではありませんか。
他人を納得させることはできないでしょうが,
それで人生が幸せに過ごせるならば。

私はフェルマーの最終定理の証明に成功した。

その言葉とともに墓碑銘として【証明】を刻むとよいと思います。
見る人にあなたの一生を十分に想起させるすばらしい墓碑銘となることと思います。

478 名前:日高 [2020/11/24(火) 10:29:53.96 ID:5JQp7zxv.net]
>460
あなたの【証明】は肝心な部分が抜けているのでせいぜい【予想】でしかないということです。

肝心な部分とは、どの部分のことでしょうか?

479 名前:日高 [2020/11/24(火) 10:35:09.37 ID:5JQp7zxv.net]
>448
それは,フェルマーの最終定理が成り立つから,(3)には整数比となる無理数解がない,といってるだけでしょう。

pがどんな数でも、いえます。

480 名前:日高 [2020/11/24(火) 10:40:56.40 ID:5JQp7zxv.net]
>449
> n≧3の場合、該当するaは、ありません。
なぜ証明していないのに該当するaがないことが分かるの?

aがどんな数でも、x,y,zは整数比とならないからです。

481 名前:日高 [2020/11/24(火) 10:52:29.16 ID:5JQp7zxv.net]
>451
(sw)^p+(tw)^p=(uw)^pのaの値は
(u-s)w=(ap)^{1/(p-1)}だからa=(1/p)((u-s)w)^(p-1)
s^p+t^p=u^pのaの値は
u-s=(ap)^{1/(p-1)}だからa=(1/p)(u-s)^(p-1)

(sw)^p+(tw)^p=(uw)^pがなりたつならば、そうなります。

482 名前:132人目の素数さん mailto:sage [2020/11/24(火) 11:48:29.54 ID:eHY2uCpi.net]
>>457
 今日も零点です。永遠に零点でしょう。

483 名前:ID:1lEWVa2s mailto:sage [2020/11/24(火) 12:24:00.05 ID:Kv2iYQyd.net]
>>463
x*y*zが整数になると何が言えますか。
またあなたの言う整数比とは
x*y*zが整数になることとはちがうんでしょうか。
私は素人なので詳しく理解に入っていけません。
現在問われている整数比の有無について何を言いたいのでしょうか。



484 名前:ID:1lEWVa2s mailto:sage [2020/11/24(火) 12:25:57.87 ID:Kv2iYQyd.net]
多分私より日高の方が詳しいでしょう。
なぜなら反論が的確だからです。に加えて私と同様の理論を使っているからです。

485 名前:132人目の素数さん mailto:sage [2020/11/24(火) 12:57:30.28 ID:Ye2bgd72.net]
>>461
(3)[(4)についても同じ]には整数比となる無理数解がないことの証明です。

>s^p+t^p=u^pとならないので、(sw)^p+(tw)^p=(uw)^pとなりません。
>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなる。

これはあなたにとっては証明かも知れませんが,他の人にとっては証明になっていません。
ただの同値な命題の循環に過ぎません。

これが十分な証明である,と考えている限り,他人から【証明】が評価されることはあり得ないでしょう。
ここでの【証明】は,うん,できたできた,と一人で楽しんで,人に見せずそのまま墓場まで大事に持って行く類いのものです。

他人にはできる限り迷惑をかけない人生を送りたいものですね。

486 名前:132人目の素数さん [2020/11/24(火) 13:22:50.36 ID:57MIyQNE.net]
日高さんの目指す人生は、フェルマーの定理の二番煎じの証明で本を出したり講演会やってガッポガッポ稼いで、編集社や講演会主催者の経費で銀座行きまくって女の子から先生!先生!って言われて王様のように暮らす人生。

487 名前:日高 [2020/11/24(火) 14:21:00.74 ID:5JQp7zxv.net]
>469
フェルマーの定理の二番煎じの証明で本を出したり

まったく、違う証明です。

488 名前:日高 [2020/11/24(火) 14:24:23.71 ID:5JQp7zxv.net]
>468
これはあなたにとっては証明かも知れませんが,他の人にとっては証明になっていません。
ただの同値な命題の循環に過ぎません。

証明では、ありません。同じ事というためです。

489 名前:日高 [2020/11/24(火) 14:26:30.48 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。

490 名前:132人目の素数さん [2020/11/24(火) 14:28:46.93 ID:gJXEmOSR.net]
二番煎じ以外は否定しないんだwww

491 名前:132人目の素数さん [2020/11/24(火) 14:30:45.93 ID:gJXEmOSR.net]
ってか二番煎じにもなっていない。
フェルマーのお茶ってラ

492 名前:ベル付けて、中身はオシッコ入れて飲まそうとしてる感じ。 []
[ここ壊れてます]

493 名前:日高 [2020/11/24(火) 14:30:55.18 ID:5JQp7zxv.net]
>466
またあなたの言う整数比とは
x*y*zが整数になることとはちがうんでしょうか。

x,y,zが、共通の無理数を持てば、x,y,zが無理数で、整数比となります。



494 名前:日高 [2020/11/24(火) 14:33:49.23 ID:5JQp7zxv.net]
>474
ってか二番煎じにもなっていない。

意味がわかりません。

495 名前:132人目の素数さん mailto:sage [2020/11/24(火) 17:18:05.27 ID:GCirVmNs.net]
>>464
> (sw)^p+(tw)^p=(uw)^pがなりたつならば、そうなります。
それでおまえは成り立たないことを示してないから
aが存在しないことはいえないだろ

x^3+y^3=(x+(b^3+c^3)^(1/3)-b)^3なら
a=1/3((b^3+c^3)^(1/3)-b)^2
x^p+y^p=(x+(b^p+c^p)^(1/p)-b)^pなら
a=1/p((b^3+c^3)^(1/3)-b)^(p-1)

p=3ならば
x^3+y^3=(x+(3a)^1/2)…(4)は
a=1/3((b^3+c^3)^(1/3)-b)^2のときに
x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
(この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
>>472
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(3)のyが無理数のときは(3)のxが無理数になる場合がある
(3)はa=1のときであり
(3)のyが無理数のときの無理数にはy=c*√3のcが有理数の場合が含まれるし
(3)のxが無理数のときの無理数にはx=b*√3のbが有理数の場合が含まれる
b,cが有理数であればx,y,zは整数比になる
よっておまえの証明はフェルマーの最終定理の証明ではない

496 名前:132人目の素数さん mailto:sage [2020/11/24(火) 17:41:58.88 ID:eHY2uCpi.net]
>>472
 零点です。


 実はこの零点投稿を見て改めて思ったことなのですが、日高さんにとって

 実数   有理数   整数 自然数

いったい何なのか?

 実数、  有理数、  整数,  自然数

の定義をきちんと述べてから証明を展開しないと、凡人はよくわからいのです。

 >>472を見ても n は整数らしいですけど、

  x,  y,  z,  r,  a

はいったい何なのかさっぱりわかりません。

497 名前:日高 [2020/11/24(火) 17:45:07.73 ID:5JQp7zxv.net]
>478
 >>472を見ても n は整数らしいですけど、

  x,  y,  z,  r,  a

はいったい何なのかさっぱりわかりません。

 x,  y,  z,  r,  aは実数です。

498 名前:132人目の素数さん mailto:sage [2020/11/24(火) 17:58:33.30 ID:NO3rnOYH.net]
日高さんは少なくとも数年前からこうやったことを続けているようです
www.crossroad.jp/cgi-bin/bbs/mathbbs/cbbs.cgi?mode=res&namber=50045&page=10&no=0
投稿されてる証明pngがここのものと酷似しています 同一人物でしょう
日高さんは人を怒らせる方法でも実践しておられるのですか

5chでの前スレは1個だけだとおもっていたら
フェルマーの最終定理の簡単な証明8
https://rio2016.5ch.net/test/read.cgi/math/1587643218/

499 名前:132人目の素数さん mailto:sage [2020/11/24(火) 18:00:27.78 ID:NO3rnOYH.net]
>>480
さっきの数学ナビゲーター掲示板URL先のコメントから引用

□投稿者/ らすかる 一般人(30回)-(2019/09/22(Sun) 13:51:09)

日高さんの「証明」は論理的に全くおかしく、誰が見ても完璧に間違いなのですが、
今まで何人もの方がいくら指摘しても日高さんがまるで理解できていないことから
わかるように、日高さんには数学の論理的思考が圧倒的に欠けていて、
日高さんに理解できるように指摘できる人は誰もいません。

ある程度理解できる人であれば、おかしい点を丁寧に細かく指摘するか、
または反例を挙げて成り立たないことを指摘するか、あるいは
全く同じ論理展開なのに成り立たない証明を挙げたりすれば
わかってもらえるのですが、日高さんはこれらの方法では
どうやっても理解してもらえませんので、もう打つ手がありません。
(だからみんな諦めて去っていますよね?)

ですからいくら提示しても不毛であり、客観的にみて掲示板荒らしにしか
なりませんので、理解したかったら論理の基本が理解できるように
自分で勉強して下さい。基本から勉強したくないのでしたら諦めて下さい。

実際にどの程度の間違いであるか日高さんにわかるような例を挙げると、
「太陽は地球より小さい。この目で見て明らかだ。誰が何と言おうと小さい。」
と言い張っているのと同レベルにおかしいです。
これも「遠くにあるものは小さく見える」と説明したり
遠くに見える山が実際に小さく見えたりする例を挙げたりして
説明すれば普通の人はわかりますが、そういう説明をしてもわからない
という点で同レベルです。

「素人にもわかるように」といっても限界があります。
例えば幼稚園児に積分を教えるのは無理ですよね?
そのレベルで不可能です。

500 名前:日高 [2020/11/24(火) 18:02:11.50 ID:5JQp7zxv.net]
>477
x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ

この部分が、よく理解できません。

501 名前:132人目の素数さん [2020/11/24(火) 18:04:30.95 ID:AGJS5X2j.net]
やっぱりあちこちで迷惑かけてる荒らしだったか。

502 名前:日高 [2020/11/24(火) 18:07:28.60 ID:5JQp7zxv.net]
>480
日高さんは人を怒らせる方法でも実践しておられるのですか

具体的な指摘をお願いしています。

503 名前:日高 [2020/11/24(火) 18:09:20.86 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。



504 名前:132人目の素数さん [2020/11/24(火) 18:09:27.41 ID:AGJS5X2j.net]
指摘してくださいって散々人の意見タダ聞きして、礼もなく返ってくるのが「理解できません」「わかりません」だもんな。
そりゃ皆んな怒るわな。

505 名前:日高 [2020/11/24(火) 18:11:39.19 ID:5JQp7zxv.net]
>481
さっきの数学ナビゲーター掲示板URL先のコメントから引用

具体的指摘をお願いします。

506 名前:日高 [2020/11/24(火) 18:13:31.57 ID:5JQp7zxv.net]
>483
やっぱりあちこちで迷惑かけてる荒らしだったか。

具体的な指摘をお願いします。

507 名前:日高 [2020/11/24(火) 18:16:03.17 ID:5JQp7zxv.net]
>486
指摘してくださいって散々人の意見タダ聞きして、礼もなく返ってくるのが「理解できません」「わかりません」だもんな。
そりゃ皆んな怒るわな。

誰が、怒っているのでしょうか?

508 名前:132人目の素数さん mailto:sage [2020/11/24(火) 18:17:18.18 ID:NO3rnOYH.net]
>>487
実は前から指摘をしているのですよね
ちなみに数年前のあなたの投稿をみてみると
あなたの証明もどきは根本的な部分で一切の修正がないようです
どうやら今までの親切な人たちの数千以上の返信は完全に無駄だったようです

509 名前:132人目の素数さん [2020/11/24(火) 18:28:02.15 ID:AGJS5X2j.net]
数百か数千か数え切れない善意の指摘に、悪意の定型文をひたすら返すってまともな精神ではないな。

510 名前:132人目の素数さん [2020/11/24(火) 18:34:13.79 ID:AGJS5X2j.net]
人に不快感を与えて快感を得るようなサイコパスって一定数はいるわけだが、リアルで目の当たりにするとおぞましい限りだ。

511 名前:132人目の素数さん mailto:sage [2020/11/24(火) 18:44:59.03 ID:IZm3jlj9.net]
>>482
> >477
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
>
> この部分が、よく理解できません。

> >451
> (sw)^p+(tw)^p=(uw)^pのaの値は
> (u-s)w=(ap)^{1/(p-1)}だからa=(1/p)((u-s)w)^(p-1)
> s^p+t^p=u^pのaの値は
> u-s=(ap)^{1/(p-1)}だからa=(1/p)(u-s)^(p-1)
>
> (sw)^p+(tw)^p=(uw)^pがなりたつならば、そうなります。
>
> > (sw)^p+(tw)^p=(uw)^pがなりたつならば、そうなります。
> それでおまえは成り立たないことを示してないから
> aが存在しないことはいえないだろ
>
> x^3+y^3=(x+(b^3+c^3)^(1/3)-b)^3なら
> a=1/3((b^3+c^3)^(1/3)-b)^2
>
> p=3ならば
> x^3+y^3=(x+(3a)^1/2)…(4)は
> a=1/3((b^3+c^3)^(1/3)-b)^2のときに
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)

という話の流れなんだから成立するaの値を探せ

512 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:19:20.18 ID:Ye2bgd72.net]
x^n+y^n=(x+n^{1/(n-1)})^n…(3)

(3)には有理数解がありません。
要するにこれが【証明】のすべて。
他にはなーんにも,ほんとになーんにもなし。

結局,整数比となる無理数解がないことも,(3)には有理数解がないことから導いているし。
n=2のときも x^2+y^2=(x+√3)^2 には有理数解はないでしょ,といっても意味不明の答えが返ってくるし。

突き詰めると,有理数の足し算では,無理数は作り出せません。
∴フェルマーの最終定理は証明されました。
といってるだけ。

日高さん,【証明】の次の2行は数学ではありません。
>(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
あなたの固定観念あるいは妄執のxyz表現です。

妄想性障害の誇大型といわれる症例に合致するのではないかと思います。
検索して思い当たる節があったらよろしく加療することをご検討下さい。

513 名前:日高 [2020/11/24(火) 19:29:00.72 ID:5JQp7zxv.net]
>490
あなたの証明もどきは根本的な部分で一切の修正がないようです

根本的な間違いがないからです。



514 名前:日高 [2020/11/24(火) 19:30:27.96 ID:5JQp7zxv.net]
>491
悪意の定型文をひたすら返すってまともな精神ではないな。

どれが、悪意の定型文でしょうか?

515 名前:日高 [2020/11/24(火) 19:30:28.47 ID:5JQp7zxv.net]
>491
悪意の定型文をひたすら返すってまともな精神ではないな。

どれが、悪意の定型文でしょうか?

516 名前:日高 [2020/11/24(火) 19:32:06.84 ID:5JQp7zxv.net]
>492
人に不快感を与えて快感を得るようなサイコパスって一定数はいるわけだが、リアルで目の当たりにするとおぞましい限りだ。

意味がわかりません。

517 名前:日高 [2020/11/24(火) 19:33:21.17 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

518 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:33:47.63 ID:NO3rnOYH.net]
日高さんは少なくとも数年前からこうやったことを続けているようです
www.crossroad.jp/cgi-bin/bbs/mathbbs/cbbs.cgi?mode=res&namber=50045&page=10&no=0
投稿されてる証明pngがここのものと酷似しています 同一人物でしょう
日高さんは人を怒らせる方法でも実践しておられるのですか

5chでの前スレは1個だけだとおもっていたら
フェルマーの最終定理の簡単な証明8
https://rio2016.5ch.net/test/read.cgi/math/1587643218/

519 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:35:45.83 ID:NO3rnOYH.net]
□投稿者/ らすかる 一般人(30回)-(2019/09/22(Sun) 13:51:09)

日高さんの「証明」は論理的に全くおかしく、誰が見ても完璧に間違いなのですが、
今まで何人もの方がいくら指摘しても日高さんがまるで理解できていないことから
わかるように、日高さんには数学の論理的思考が圧倒的に欠けていて、
日高さんに理解できるように指摘できる人は誰もいません。

ある程度理解できる人であれば、おかしい点を丁寧に細かく指摘するか、
または反例を挙げて成り立たないことを指摘するか、あるいは
全く同じ論理展開なのに成り立たない証明を挙げたりすれば
わかってもらえるのですが、日高さんはこれらの方法では
どうやっても理解してもらえませんので、もう打つ手がありません。
(だからみんな諦めて去っていますよね?)

ですからいくら提示しても不毛であり、客観的にみて掲示板荒らしにしか
なりませんので、理解したかったら論理の基本が理解できるように
自分で勉強して下さい。基本から勉強したくないのでしたら諦めて下さい。

実際にどの程度の間違いであるか日高さんにわかるような例を挙げると、
「太陽は地球より小さい。この目で見て明らかだ。誰が何と言おうと小さい。」
と言い張っているのと同レベルにおかしいです。
これも「遠くにあるものは小さく見える」と説明したり
遠くに見える山が実際に小さく見えたりする例を挙げたりして
説明すれば普通の人はわかりますが、そういう説明をしてもわからない
という点で同レベルです。

「素人にもわかるように」といっても限界があります。
例えば幼稚園児に積分を教えるのは無理ですよね?
そのレベルで不可能です。

520 名前:日高 [2020/11/24(火) 19:36:53.87 ID:5JQp7zxv.net]
>493

521 名前:
という話の流れなんだから成立するaの値を探せ

p=2ならば、すべて、成立します。
[]
[ここ壊れてます]

522 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:37:33.95 ID:znInfkIf.net]
>>450 日高
> >430
> 「式が違います」でごまかそうとするんだろうが
> (A) x^3+y^3=z^3
> (B) x^3+7y^3=z^3
> (C) x^3+8y^3=z^3
> (A)と(B)は違う式,(B)と(C)は違う式,(C)と(A)も違う式だ。
>
> (A)と(B)(C)は、同じ式ではありません。

(A)は自然数解なし,(B)は自然数解あり。(C)は自然数解を持ちますか?

523 名前:日高 [2020/11/24(火) 19:40:50.02 ID:5JQp7zxv.net]
>500,501
このコピーの目的を教えてください。



524 名前:日高 [2020/11/24(火) 19:43:05.58 ID:5JQp7zxv.net]
>503
(A)は自然数解なし,(B)は自然数解あり。(C)は自然数解を持ちますか?

わかりません。

525 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:45:21.15 ID:znInfkIf.net]
>>505 日高
> >503
> (A)は自然数解なし,(B)は自然数解あり。(C)は自然数解を持ちますか?
>
> わかりません。

わからない。するともしかして(A)も自然数解を持つかもしれませんよね。

526 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:45:37.81 ID:NO3rnOYH.net]
>>504
「過去ログを読め」という意味です
数々の指摘のパターンはいくつかのタイプに収束しています
あなたの証明もどきは根本的になにも変わってないので
過去の指摘はほとんどそのままあてはまるばかりです
もっともあなたは論理が同じだとか論理が似てるとか
そういう考えが一切できないようなので全くの無駄だとおもいますが

無駄な証明もどきを何度もあげるより
過去の行いを悔い改めてはどうですか

527 名前:132人目の素数さん [2020/11/24(火) 19:48:49.03 ID:AGJS5X2j.net]
リアルサイコパスですわ

528 名前:日高 [2020/11/24(火) 19:54:46.04 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

529 名前:日高 [2020/11/24(火) 19:57:42.46 ID:5JQp7zxv.net]
>506
わからない。するともしかして(A)も自然数解を持つかもしれませんよね。

(A)は自然数解をもちません。

530 名前:132人目の素数さん mailto:sage [2020/11/24(火) 19:58:14.44 ID:oMDyjKhh.net]
>>502
> >493
> という話の流れなんだから成立するaの値を探せ
>
> p=2ならば、すべて、成立します。

> >477
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
>
> この部分が、よく理解できません。
今しているのはp=3の話だぞ

531 名前:日高 [2020/11/24(火) 19:59:22.12 ID:5JQp7zxv.net]
>507
「過去ログを読め」という意味です

本人でしょうか?

532 名前:日高 [2020/11/24(火) 20:00:52.82 ID:5JQp7zxv.net]
>508
リアルサイコパスですわ

どういう意味でしょうか?

533 名前:132人目の素数さん mailto:sage [2020/11/24(火) 20:02:24.10 ID:znInfkIf.net]
>>510 日高
> >506
> わからない。するともしかして(A)も自然数解を持つかもしれませんよね。
>
> (A)は自然数解をもちません。

もう一度書くと

> (A) x^3+y^3=z^3
> (B) x^3+7y^3=z^3
> (C) x^3+8y^3=z^3

で(B)は自然数解x=y=1,z=2を持ちます。これら三つの式が違うのは確かなこと。
(C)が自然数解を持つかどうかはわからない。
なぜ(A)だけ自然数解を持たないと言い切れるのですか?



534 名前:日高 [2020/11/24(火) 20:02:58.51 ID:5JQp7zxv.net]
>511
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
>
> この部分が、よく理解できません。
今しているのはp=3の話だぞ

理解できないので、やさしく説明していただけないでしょうか。

535 名前:日高 [2020/11/24(火) 20:04:40.52 ID:5JQp7zxv.net]
>514
なぜ(A)だけ自然数解を持たないと言い切れるのですか?

証明済だからです。

536 名前:132人目の素数さん [2020/11/24(火) 20:06:51.54 ID:AGJS5X2j.net]
リアルサイコパスですわいな

537 名前:132人目の素数さん mailto:sage [2020/11/24(火) 20:09:14.66 ID:znInfkIf.net]
>>516 日高
> >514
> なぜ(A)だけ自然数解を持たないと言い切れるのですか?
>
> 証明済だからです。

だれがいつ証明したんですか?

538 名前:132人目の素数さん mailto:sage [2020/11/24(火) 20:22:06.71 ID:GPQ3v+0S.net]
>>495
> >490
> あなたの証明もどきは根本的な部分で一切の修正がないようです
>
> 根本的な間違いがないからです。
根本的な間違いが理解できないだけ。
自分の理解力を反省するのが先。

539 名前:132人目の素数さん mailto:sage [2020/11/24(火) 20:39:00.88 ID:+SWa/Nhj.net]
>>515
おまえの言い分
> (sw)^p+(tw)^p=(uw)^pのaの値は?
>
> p=2ならば、a=w
> p≧3ならば、aは存在しません。
>
> s^p+t^p=u^pのaの値は?
>
> p=2ならば、a=1
> p≧3ならば、aは存在しません。

> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
aが存在しないのなら整数比でない解も一切存在しないことになるだろ

おまえの言い分は
aが存在しないのでx^3+y^3=(x+√(3a))^3は実数解を持たない
実数解を持つと(正しく)主張するのならp=3のときに成立するaの値を探せ

540 名前:日高 [2020/11/24(火) 20:54:11.45 ID:5JQp7zxv.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

541 名前:日高 [2020/11/24(火) 20:56:58.04 ID:5JQp7zxv.net]
>518
だれがいつ証明したんですか?

ワイルズです。

542 名前:日高 [2020/11/24(火) 20:59:28.84 ID:5JQp7zxv.net]
>519
根本的な間違いが理解できないだけ。
自分の理解力を反省するのが先。

どこの部分が根本的な間違いでしょうか?

543 名前:132人目の素数さん mailto:sage [2020/11/24(火) 21:01:03.90 ID:znInfkIf.net]
>>522
> >518
> だれがいつ証明したんですか?
>
> ワイルズです。

日高さん自身が証明したという意識はないのですか?



544 名前:日高 [2020/11/24(火) 21:03:58.95 ID:5JQp7zxv.net]
>520
おまえの言い分は
aが存在しないのでx^3+y^3=(x+√(3a))^3は実数解を持たない
実数解を持つと(正しく)主張するのならp=3のときに成立するaの値を探せ

aが、どんな数でも、x^3+y^3=(x+√(3a))^3のx,y,zは、整数比となりません。

545 名前:日高 [2020/11/24(火) 21:05:43.89 ID:5JQp7zxv.net]
>524
日高さん自身が証明したという意識はないのですか?

まだ、誰も、納得していません。

546 名前:132人目の素数さん [2020/11/24(火) 21:08:22.33 ID:AGJS5X2j.net]
フェルマーの定理証明した人のロジック使ってフェルマーの定理証明するの?
意味不明なんですけど…。

547 名前:132人目の素数さん mailto:sage [2020/11/24(火) 21:09:11.25 ID:GPQ3v+0S.net]
>>523
> >519
> 根本的な間違いが理解できないだけ。
> 自分の理解力を反省するのが先。
>
> どこの部分が根本的な間違いでしょうか?
なんで指摘を無視する人に教えなきゃいけないの?自分で探せば。

548 名前:132人目の素数さん mailto:sage [2020/11/24(火) 21:09:20.74 ID:daqRxXwJ.net]
病状が悪化しているようだから、早急に医者にかかった方がいいと思うのだが。

549 名前:132人目の素数さん mailto:sage [2020/11/24(火) 21:10:27.78 ID:eHY2uCpi.net]
> >518
> だれがいつ証明したんですか?
>
> ワイルズです。
w

550 名前:wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
まるでワイルズの証明を読んだみたいですね。
文字を数えたのかな。それも大変そうだけど。
[]
[ここ壊れてます]

551 名前:132人目の素数さん [2020/11/24(火) 21:17:18.14 ID:AGJS5X2j.net]
日高さん一文40文字の日本語も理解できないのに、ワイルズの英語の論文は理解できるんだ…。w

552 名前:132人目の素数さん [2020/11/24(火) 21:17:18.14 ID:AGJS5X2j.net]
日高さん一文40文字の日本語も理解できないのに、ワイルズの英語の論文は理解できるんだ…。w

553 名前:132人目の素数さん mailto:sage [2020/11/24(火) 21:39:22.68 ID:znInfkIf.net]
日高さん、>>521の証明にならって
x^3+8y^3=z^3に自然数解がないことが言えるかもしれませんよ。



554 名前:132人目の素数さん mailto:sage [2020/11/24(火) 22:21:33.73 ID:V6aPcnP5.net]
>>525
> aが、どんな数でも、x^3+y^3=(x+√(3a))^3のx,y,zは、整数比となりません。
おまえはこのことを証明していないだろ
aが存在しないから と aがどんな数でも では内容が全く違うから
おまえが自分で証明していない事柄を書いても意味ないよ

> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
この中に整数比の解が含まれるかどうかはおまえの証明では分からない

555 名前:132人目の素数さん mailto:sage [2020/11/24(火) 22:30:56.10 ID:MNZ3ysaE.net]
>>455

あなたは何度も言っていましたよね。
x^2+y^2=(x+√3)^2は(3)式ではなく(4)式だと。

同じように、
s^n+t^n=u^nはr^(n-1)=nを満たさないので(4)式です。
520のどこにも、(4)式に有理数s,t,uを代入したときに成り立つかどうか調べた部分はありません。

(4)の解は(3)の解のa^{1/(n-1)}倍となる。
つまり、(4)の解がx=s,y=t,z=uのとき、(3)の解はx=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}である。
x、y、zは(3)の解なのでr^(n-1)=nをみたす。
計算して、(3)の解はx=s(n^{1/(n-1)})/(u-s),y=t(n^{1/(n-1)})/(u-s),z=u(n^{1/(n-1)})/(u-s)
n>2のとき、n^{1/(n-1)}は必ず無理数、よってy=t(n^{1/(n-1)})/(u-s)は必ず無理数
つまり、(4)のyが有理数で解が整数比となるとき、(3)のyは必ず無理数となる。

520のどこにも、(3)式に無理数のyを代入したときに成り立つかどうか調べた部分はありません。

556 名前:132人目の素数さん [2020/11/25(水) 02:46:08.06 ID:8foIfscG.net]
・間違いを認めない
・平気で嘘をつく
・自分で調べようとしない
・学ぼうとしない
・自分が絶対正しいと思い込む
・礼儀を知らない
・人に迷惑かけて平然とできる
・妄想が強い
・都合の悪い事は隠す/忘れたフリをする

557 名前:日高 [2020/11/25(水) 07:47:39.81 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

558 名前:日高 [2020/11/25(水) 07:51:35.06 ID:ZnTXkncW.net]
>527
フェルマーの定理証明した人のロジック使ってフェルマーの定理証明するの?
意味不明なんですけど…。

「ロジック使って」の言葉の意味を教えてください。

559 名前:日高 [2020/11/25(水) 07:53:17.08 ID:ZnTXkncW.net]
>528
> どこの部分が根本的な間違いでしょうか?
なんで指摘を無視する人に教えなきゃいけないの?自分で探せば。

あなたの、ご意見をお聞かせください。

560 名前:日高 [2020/11/25(水) 07:55:43.10 ID:ZnTXkncW.net]
>529
病状が悪化しているようだから、早急に医者にかかった方がいいと思うのだが。

私の証明に対する、あなたのご意見をお聞かせ下さい。

561 名前:日高 [2020/11/25(水) 07:58:26.21 ID:ZnTXkncW.net]
>530
まるでワイルズの証明を読んだみたいですね。
文字を数えたのかな。それも大変そうだけど。

私の証明に対する、あなたのご意見をお聞かせ下さい。

562 名前:日高 [2020/11/25(水) 07:59:48.19 ID:ZnTXkncW.net]
>531
日高さん一文40文字の日本語も理解できないのに、ワイルズの英語の論文は理解できるんだ…。w

日高さん一文40文字の日本語も理解できないのに、ワイルズの英語の論文は理解できるんだ…。w

563 名前:日高 [2020/11/25(水) 08:01:02.10 ID:ZnTXkncW.net]
>542
日高さん一文40文字の日本語も理解できないのに、ワイルズの英語の論文は理解できるんだ…。w

私の証明に対する、あなたのご意見をお聞かせ下さい。



564 名前:日高 [2020/11/25(水) 08:02:47.37 ID:ZnTXkncW.net]
>533
日高さん、>>521の証明にならって
x^3+8y^3=z^3に自然数解がないことが言えるかもしれませんよ。

わかりません。

565 名前:日高 [2020/11/25(水) 08:11:24.21 ID:ZnTXkncW.net]
>534
> aが、どんな数でも、x^3+y^3=(x+√(3a))^3のx,y,zは、整数比となりません。
おまえはこのことを証明していないだろ
aが存在しないから と aがどんな数でも では内容が全く違うから
おまえが自分で証明していない事柄を書いても意味ないよ

(4)の解は(3)の解のa^{1/(n-1)}倍となるので、 x^3+y^3=(x+√(3a))^3は、
整数比の解を持ちません。

> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
この中に整数比の解が含まれるかどうかはおまえの証明では分からない

(4)の解は(3)の解のa^{1/(n-1)}倍となるので、
x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2が解になることは、ありません。

566 名前:日高 [2020/11/25(水) 08:18:50.56 ID:ZnTXkncW.net]
>535
s^n+t^n=u^nはr^(n-1)=nを満たさないので(4)式です。
520のどこにも、(4)式に有理数s,t,uを代入したときに成り立つかどうか調べた部分はありません。

(3)式に有理数s,t,uを代入しても、成り立たないので、
(4)式に有理数s,t,uを代入しても、成り立ちません。

567 名前:日高 [2020/11/25(水) 08:21:41.25 ID:ZnTXkncW.net]
>536
・間違いを認めない
・平気で嘘をつく
・自分で調べようとしない
・学ぼうとしない
・自分が絶対正しいと思い込む
・礼儀を知らない
・人に迷惑かけて平然とできる
・妄想が強い
・都合の悪い事は隠す/忘れたフリをする

私の証明に対する、あなたのご意見をお聞かせ下さい。

568 名前:日高 [2020/11/25(水) 08:25:15.02 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

569 名前:132人目の素数さん mailto:sage [2020/11/25(水) 08:51:40.57 ID:PvfnC9Ge.net]
>>539
> >528
> > どこの部分が根本的な間違いでしょうか?
> なんで指摘を無視する人に教えなきゃいけないの?自分で探せば。
>
> あなたの、ご意見をお聞かせください。
態度と証明がまともになったと思ったら意見してやるよ。

570 名前:日高 [2020/11/25(水) 08:56:03.87 ID:ZnTXkncW.net]
>549
態度と証明がまともになったと思ったら意見してやるよ。

私の証明のどの部分が、まともでないのでしょうか?

571 名前:132人目の素数さん mailto:sage [2020/11/25(水) 09:29:45.87 ID:PvfnC9Ge.net]
>>550
> >549
> 態度と証明がまともになったと思ったら意見してやるよ。
>
> 私の証明のどの部分が、まともでないのでしょうか?
態度と証明がまともになったと思ったら意見してやるよ。

572 名前:日高 [2020/11/25(水) 09:38:05.17 ID:ZnTXkncW.net]
>551
> 私の証明のどの部分が、まともでないのでしょうか?
態度と証明がまともになったと思ったら意見してやるよ。

よろしくお願いいたします。

573 名前:132人目の素数さん [2020/11/25(水) 10:28:07.38 ID:f3lxcNvo.net]
日高さんはワイルズの論文読んだんでしょ。
ワイルズはどういう考え方で証明したの?



574 名前:日高 [2020/11/25(水) 10:35:44.42 ID:ZnTXkncW.net]
>553
ワイルズはどういう考え方で証明したの?

わかりません。

575 名前:132人目の素数さん mailto:sage [2020/11/25(水) 10:40:20.77 ID:43hayKNl.net]
 こんな馬鹿なスレッド、さっさと廃止にしましょう。

576 名前:日高 [2020/11/25(水) 11:08:48.75 ID:ZnTXkncW.net]
>555
こんな馬鹿なスレッド、さっさと廃止にしましょう。

私の証明のどの部分が馬鹿なのでしょうか?

577 名前:132人目の素数さん [2020/11/25(水) 11:20:02.69 ID:f3lxcNvo.net]
>>554 え?読んでないの?

578 名前:132人目の素数さん mailto:sage [2020/11/25(水) 11:26:53.92 ID: ]
[ここ壊れてます]

579 名前:IO1MZxYg.net mailto: >>546
>(3)式に有理数s,t,uを代入しても、成り立たないので・・・・

(3)を捏造してはいけません。
sに有理数を入れると,u=s+r は他ならぬ「あなた」の r^(n-1)=n という指定によって無理数となります。
u=s+rであり,r=(無理数)である限り,(3)に有理数s,t,uを代入することはできません。
s,t,uがともに有理数の場合は,(3)式が成り立つかどうか検討以前の問題で,(3)の式の定義範囲外ですから(3)ではありません。

(3)式に入れて成り立たないのは有理数s,t,無理数uの場合です。

>(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。

のはzの項に無理数が入ることが前提です。
ですから,証明結果を都合よく捏造してはいけません。

いくら数学お遊戯とはいえ,数学の名を冠しているんですから自分で作った式の成立条件ぐらい守りましょう。
それとも,ここでの有理数無理数のすり替えも自分をだますテクニック(妄想的固定観念)なんでしょうか。

ならば,なにをか言わんや,ですが。
[]
[ここ壊れてます]

580 名前:日高 [2020/11/25(水) 11:46:18.19 ID:ZnTXkncW.net]
>557
>>554 え?読んでないの?

よんでも、わかりません。
あなたは、わかりますか?

581 名前:132人目の素数さん [2020/11/25(水) 11:46:52.18 ID:ZC+6sytC.net]
息の長い釣りやってるね

582 名前:日高 [2020/11/25(水) 11:53:10.29 ID:ZnTXkncW.net]
>558
(3)を捏造してはいけません。

(3)のx,y,zは、整数比となりえないということです。
よって、(4)のx,y,zも、整数比となりえません。
ただし、(4)のrは有理数となりえます。

583 名前:132人目の素数さん mailto:sage [2020/11/25(水) 11:54:10.01 ID:43hayKNl.net]
 きょうジャイアンツがソフトバンクに一矢報いるには、日高さんの珍証明を

どう使えばいいでしょうか?



584 名前:日高 [2020/11/25(水) 12:00:16.15 ID:ZnTXkncW.net]
>560
息の長い釣りやってるね

どういう意味でしょうか?

585 名前:132人目の素数さん [2020/11/25(水) 12:01:04.30 ID:f3lxcNvo.net]
>>559 読んだの?読んでないの?

586 名前:日高 [2020/11/25(水) 12:01:56.22 ID:ZnTXkncW.net]
>562
 きょうジャイアンツがソフトバンクに一矢報いるには、日高さんの珍証明を

どう使えばいいでしょうか?

わかりません。

587 名前:日高 [2020/11/25(水) 12:03:29.02 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

588 名前:日高 [2020/11/25(水) 12:06:30.74 ID:ZnTXkncW.net]
>564
>>559 読んだの?読んでないの?

読んで、いません。
あなたは、読みましたか?

589 名前:132人目の素数さん [2020/11/25(水) 12:14:01.89 ID:f3lxcNvo.net]
>>567 読んでいないのに、何で日高さんの証明はワイルズの二番煎じじゃないって断言できるの?

590 名前:132人目の素数さん mailto:sage [2020/11/25(水) 12:51:47.06 ID:43hayKNl.net]
>>566
 x の代わりに♂、y の代わりに♀にしたらどうでしょう?

 そうすれば日高さんの珍証明は成り立ちます。

591 名前:132人目の素数さん mailto:sage [2020/11/25(水) 12:53:00.20 ID:IO1MZxYg.net]
>>561
有理数解がない⇒整数比の解がない

また,そう思い始めてるんじゃないですか。
整数比の無理数解はあるかも知れませんよ。

(3)のどこをどうほじくると,整数比の無理数解がないと分かるんですか。

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。

ってのは答えになっていませんよ。
この時点ではs^n+t^n=u^n は有理数解を持たない,との証明はまだなされていないことをお忘れなく。
というより,「s^n+t^n=u^n は有理数解を持たない」ことこそが証明主題でしょうに。
証明主題であるこををどうして忘れられるのか,【証明】の途中で結論を持ち出して,なぜ自ら怪しまないのか?

トテモ,ターイヘン不思議デース。

592 名前:日高 [2020/11/25(水) 13:17:02.05 ID:ZnTXkncW.net]
>568
>>567 読んでいないのに、何で日高さんの証明はワイルズの二番煎じじゃないって断言できるの?

よんでいませんが、本についての、概要は読みました。

593 名前:日高 [2020/11/25(水) 13:37:08.19 ID:ZnTXkncW.net]
>569
 x の代わりに♂、y の代わりに♀にしたらどうでしょう?

 そうすれば日高さんの珍証明は成り立ちます。

根拠は?



594 名前:132人目の素数さん [2020/11/25(水) 13:39:06.65 ID:f3lxcNvo.net]
>>571

過去レス>>514-522を見ると、日高さんの証明に対する疑問を解消するためには、ワイルズの証明した成果を使わないといけないのですよね。

日高さんの証明はワイルズの証明が無いと説明できない。これ二番煎じというか、ワイルズにおんぶに抱っこですよね。ってか日高さんの証明はワイルズの証明に余分なものを付け足してるって事ですよね。

595 名前:日高 [2020/11/25(水) 13:40:28.48 ID:ZnTXkncW.net]
>570
この時点ではs^n+t^n=u^n は有理数解を持たない,との証明はまだなされていないことをお忘れなく。

「この時点では」とは、どの部分を指すのでしょうか?

596 名前:日高 [2020/11/25(水) 13:42:37.49 ID:ZnTXkncW.net]
>573
過去レス>>514-522を見ると、日高さんの証明に対する疑問を解消するためには、ワイルズの証明した成果を使わないといけないのですよね。

513-521のどの部分でしょうか?

597 名前:日高 [2020/11/25(水) 13:43:24.96 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

598 名前:132人目の素数さん mailto:sage [2020/11/25(水) 14:23:14.02 ID:IO1MZxYg.net]
>>574
あなたが(3)には整数比の無理数解は存在しない,と証明の途中で結論を出したときです。



599 名前:私にはその結論は証明の終了まで出せません。
というか,(3)には整数比の無理数解はない,というのはフェルマーの最終定理と同値命題です。

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。
>s^p+t^p=u^pとなるならば,(sw)^p+(tw)^p=(uw)^pとなります。

どちらも成り立ちます。
ですから,フェルマーの最終定理の証明の終了前に,(3)には「整数比の無理数解は存在しない」という結論を得ることは,私にはできません。
いや,(3)には「整数比の無理数解は存在しない」と証明[もちろん数学的な証明です]に成功したら,そこで証明を打ち切ってよいです。
その時点でフェルマーの最終定理の証明に成功しています。

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。

でも,これは証明ではないでしょう。いや,ほんとに,これはないです。
フェルマーの最終定理の証明途中で,(3)には整数比となる無理数解が存在しないと言い出し,その理由にs^p+t^p=u^pとなるからです,とか。
フェルマーの最終定理の証明に,フェルマーの最終定理が成り立つことが2回使われています。

まさに噴飯ものです。
[]
[ここ壊れてます]

600 名前:132人目の素数さん [2020/11/25(水) 14:59:24.71 ID:f3lxcNvo.net]
>>573

>514と
>518と
>522にある通りです。

日高さんの証明に対する疑問を解消するためには、ワイルズの証明した成果を使わないといけないのですよね。

日高さんの証明はワイルズの証明が無いと説明できない。これ二番煎じというか、ワイルズにおんぶに抱っこですよね。ってか日高さんの証明はワイルズの証明に余分なものを付け足してるって事ですよね。

601 名前:132人目の素数さん [2020/11/25(水) 15:00:29.57 ID:f3lxcNvo.net]
>>575

>514と
>518と
>522にある通りです。

日高さんの証明に対する疑問を解消するためには、ワイルズの証明した成果を使わないといけないのですよね。

日高さんの証明はワイルズの証明が無いと説明できない。これ二番煎じというか、ワイルズにおんぶに抱っこですよね。ってか日高さんの証明はワイルズの証明に余分なものを付け足してるって事ですよね。

602 名前:132人目の素数さん [2020/11/25(水) 15:04:25.17 ID:f3lxcNvo.net]
>>578はアンカーのつけ間違い。
>>579に回答して。

603 名前:日高 [2020/11/25(水) 15:12:03.09 ID:ZnTXkncW.net]
>577
>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。

でも,これは証明ではないでしょう。いや,ほんとに,これはないです。

これは、等式の性質です。



604 名前:日高 [2020/11/25(水) 15:14:36.20 ID:ZnTXkncW.net]
>579
日高さんの証明はワイルズの証明に余分なものを付け足してるって事ですよね。

方法が、根本的に違います。私の証明は、単純です。

605 名前:132人目の素数さん [2020/11/25(水) 15:23:36.11 ID:f3lxcNvo.net]
>>582 日本語理解できてますか?
日高さんの証明もどきは、ワイルズの証明が無ければ疑問を解消できないですよねって言ってるんです。

じゃあ日高さんの証明もどきは要らないじゃんって話です。ワイルズの証明だけで充分でしょ。

606 名前:132人目の素数さん [2020/11/25(水) 15:27:49.62 ID:f3lxcNvo.net]
日高さんの証明もどきは、ワイルズの証明が必要。
ワイルズの証明には、日高さんの証明もどきは不必要。

つまり日高さんの証明もどきは無い方がいいって話。

607 名前:132人目の素数さん mailto:sage [2020/11/25(水) 15:29:09.04 ID:IO1MZxYg.net]
>>581
>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。

>これは、等式の性質です。

つまり証明ではないんですね。
それでは,整数比となる無理数解が存在しないことの【証明】がないことになりますが,それでいいんですか?
等式の性質として s^p+t^p=u^p が成り立ってしまうから,それは矛盾しますと言いたいわけでしょう。

証明とは何の関係もない等式の説明をしているだけですか?
そんな等式の【説明】は無駄です。
【説明】であって【証明】でないなら,整数比となる無理数解がないことの証明をお願いします。

>(sw)^p+(tw)^p=(uw)^pとなるならば、s^p+t^p=u^pとなります。

とかのオウムの口まねか,レコーダーの繰り返し再生よりましな答えを期待しています。

608 名前:日高 [2020/11/25(水) 15:30:56.06 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

609 名前:132人目の素数さん mailto:sage [2020/11/25(水) 15:32:10.49 ID:YepMekkj.net]
もう無駄でしょう "コレ"はなにも理解しません
日常生活に支障をきたしているレベル
この論理不適合者の立てた過去スレをみてください

5ch数学板にて 他に確認できるだけで 9個も関連スレがあります
このスレは少なくとも10番目に相当するとおもいます

ttps://rio2016.5ch.net/test/read.cgi/math/1569198816/
ttps://rio2016.5ch.net/test/read.cgi/math/1572998533/
ttps://rio2016.5ch.net/test/read.cgi/math/1575007235/
ttps://rio2016.5ch.net/test/read.cgi/math/1576824679/
ttps://rio2016.5ch.net/test/read.cgi/math/1579175686/
ttps://rio2016.5ch.net/test/read.cgi/math/1581236794/
ttps://rio2016.5ch.net/test/read.cgi/math/1582716245/
ttps://rio2016.5ch.net/test/read.cgi/math/1587643218/
ttps://rio2016.5ch.net/test/read.cgi/math/1602912311/

610 名前:日高 [2020/11/25(水) 15:33:40.68 ID:ZnTXkncW.net]
>583
じゃあ日高さんの証明もどきは要らないじゃんって話です。

別の簡単な証明です。要る、要らないは、関係ありません。

611 名前:日高 [2020/11/25(水) 15:36:08.83 ID:ZnTXkncW.net]
>584
日高さんの証明もどきは

どの部分が、証明もどきでしょうか?

612 名前:日高 [2020/11/25(水) 15:40:52.39 ID:ZnTXkncW.net]
>585
等式の性質として s^p+t^p=u^p が成り立ってしまうから,

無理数で、整数比となることはありません。

613 名前:132人目の素数さん [2020/11/25(水) 15:42:10.18 ID:f3lxcNvo.net]
>>588

>>518の疑問を解消するのに日高さん自身がワイルズの証明が必要って言ってるじゃんw
別の簡単な証明じゃないでしょw
ワイルズの証明が無ければ、日高さんの証明もどきはゴミ箱行き。
ワイルズの証明には



614 名前:日高さんのゴミみたいな証明もどきは不用。
日高さんの証明はワイルズの証明と別なんじゃなく、ワイルズの証明に小判鮫みたいにくっついて来ているだけw
こう言ってしまうと小判鮫に失礼かw

日高さんの証明は、ワイルズの証明に寄生虫みたいに寄生しているだけw
[]
[ここ壊れてます]

615 名前:日高 [2020/11/25(水) 15:45:51.49 ID:ZnTXkncW.net]
>587
もう無駄でしょう "コレ"はなにも理解しません
日常生活に支障をきたしているレベル
この論理不適合者の立てた過去スレをみてください

私の証明に対する、あなたのご意見をお聞かせ下さい。

616 名前:日高 [2020/11/25(水) 15:48:25.98 ID:ZnTXkncW.net]
>591
>>518の疑問を解消するのに日高さん自身がワイルズの証明が必要って言ってるじゃんw

585のどの部分のことでしょうか?

617 名前:132人目の素数さん [2020/11/25(水) 16:00:42.33 ID:f3lxcNvo.net]
寄生虫というのも寄生虫に失礼な気がするなぁ。
日高さんの証明もどきは「汚れ」。生物ではなく何か汚い「汚れ」。
美しいワイルズの証明に付着した「汚れ」。
そんな感じかな。

618 名前:132人目の素数さん mailto:sage [2020/11/25(水) 16:03:25.44 ID:IO1MZxYg.net]
>>590
>無理数で、整数比となることはありません。

(3)に整数比となる無理数解がないのは「なぜ」なのか聞いたら,これが答えですか。
(3)には整数比となる無理数解はない。
あなたの【証明】すべての前提にこれがあります。
その理由は

>(3)はyが有理数のとき、xは無理数となる

からですよね?。
で,(3)のx,yが無理数のときはどうなるんです?
整数比となる無理数解x,yは存在しないんですか?

619 名前:日高 [2020/11/25(水) 16:38:39.59 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

620 名前:日高 [2020/11/25(水) 16:42:32.65 ID:ZnTXkncW.net]
>594
美しいワイルズの証明に付着した「汚れ」。

私の証明のどの部分が、「汚れ」でしょうか?
あなたは、ワイルズの証明を、理解できますか。

621 名前:日高 [2020/11/25(水) 16:45:09.92 ID:ZnTXkncW.net]
>595
で,(3)のx,yが無理数のときはどうなるんです?

(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
です。

622 名前:132人目の素数さん [2020/11/25(水) 16:56:52.11 ID:9H7qxFX/.net]
>>598
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。

それは言い換えると
(3)の解(x,y,z)が整数比となるのは、x,y,zが全て有理数のときに限る。
ということですか?

623 名前:132人目の素数さん mailto:sage [2020/11/25(水) 17:00:31.59 ID:IO1MZxYg.net]
>>598
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。

から,どうなるんですか?
等式の性質,等式の性質といいたいのは分かりました。

>yが有理数のときに整数比となる[から・・・となる]。

ことは【証明】の中でどんな意味を持つんですか?
いつも,[から・・・]の部分の日本語が欠けています。

「yが有理数のときに整数比となる」からx,y,zは整数比となることはない。
でいいんですか。
人に言いたいことを伝えたいならば,ここの最後の結論[から・・・となる]は省けませんよ。
何が言いたいか分からなくなります。



624 名前:日高 [2020/11/25(水) 17:10:00.51 ID:ZnTXkncW.net]
>599
それは言い換えると
(3)の解(x,y,z)が整数比となるのは、x,y,zが全て有理数のときに限る。
ということですか?

はい。そうです。

625 名前:日高 [2020/11/25(水) 17:14:14.46 ID:ZnTXkncW.net]
>600
「yが有理数のときに整数比となる」からx,y,zは整数比となることはない。
でいいんですか。

yが有理数のときに整数比とならないので、yが、無理数のとき、x,y,zが整数比となることはありません。

626 名前:132人目の素数さん [2020/11/25(水) 17:24:31.55 ID:9H7qxFX/.net]
>>601
> (3)の解(x,y,z)が整数比となるのは、x,y,zが全て有理数のときに限る。

ではその理由を教えてください。
言葉を惜しまず、冗長になったとしてもいいので、
あなたの考えうる限り細かく説明してもらえますか。

>>602
> yが有理数のときに整数比とならないので、yが、無理数のとき、x,y,zが整数比となることはありません。

これでは筋が通っていません。
「yが有理数のときに方程式(3)の解(x,y,z)は整数比とならない」は真ですが、
yが無理数のとき(3)の解x,y,zが整数比となるかは不明です。

627 名前:日高 [2020/11/25(水) 17:38:21.22 ID:ZnTXkncW.net]
>603
yが無理数のとき(3)の解x,y,zが整数比となるかは不明です。

(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となります。

yが有理数のときに整数比とならないので、yが無理数のとき、x,y,zは整数比となりません。

628 名前:132人目の素数さん mailto:sage [2020/11/25(水) 18:05:43.03 ID:bsNa5/Zp.net]
>>545
> (4)の解は(3)の解のa^{1/(n-1)}倍となるので、 x^3+y^3=(x+√(3a))^3は、
> 整数比の解を持ちません。
>
> > x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> > (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
> この中に整数比の解が含まれるかどうかはおまえの証明では分からない
>
> (4)の解は(3)の解のa^{1/(n-1)}倍となるので、
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2が解になることは、ありません。
またお得意のウソですか
自分の主張が正しいかどうか計算して確認しろよ

x^3+y^3=(x+√3)^3においてb,cを以下のように定めたx=b*√3,y=c*√3は解である
このときz=(b+1)*√3となる
b=2/((35)^(1/3)^2-2),c=3/((35)^(1/3)^2-2)
b=3/((91)^(1/3)^2-3),c=4/((91)^(1/3)^2-3)
...
b=b'/((b'^3+c'^3)^(1/3)-b'),c=c'/((b'^3+c'^3)^(1/3)-b') (b',c'は0以外の実数)

x^3+y^3=(x+√(3a))^3においてb,cを以下のように定めたx=b*√(3a),y=c*√(3a)は解である
このときz=(b+1)*(3a)^1/2となる
b=2/((35)^(1/3)^2-2),c=3/((35)^(1/3)^2-2)
b=3/((91)^(1/3)^2-3),c=4/((91)^(1/3)^2-3)
...
b=b'/((b'^3+c'^3)^(1/3)-b'),c=c'/((b'^3+c'^3)^(1/3)-b') (b',c'は0以外の実数)

629 名前:132人目の素数さん mailto:sage [2020/11/25(水) 18:07:35.63 ID:bsNa5/Zp.net]
>>545
> (4)の解は(3)の解のa^{1/(n-1)}倍となるので、 x^3+y^3=(x+√(3a))^3は、
> 整数比の解を持ちません。

(3)の解x=b*√3,y=c*√3,z=(b+1)*√3が整数比であるかどうかは
x^3+y^3=(x+1)^3の解によって決まるので
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2を必ず解に持つ
> (この時点ではb,cは実数であり整数比とは限らないが必ず解を持つ)
この中に整数比の解が含まれるかどうかはおまえの証明では分からない

a=1のときに整数比になるかならないかはa=1/3のときの解で決まるので
まず最初にa=1/3の場合を証明しなければならない

630 名前:日高 [2020/11/25(水) 18:19:53.62 ID:ZnTXkncW.net]
>605
> x=b*(3a)^1/2,y=c*(3a)^1/2,z=(b+1)*(3a)^1/2が解になることは、ありません。
またお得意のウソですか
自分の主張が正しいかどうか計算して確認しろよ

上記の式は、b^3+c^3=(b+1)^3と同じです。(4)の形なので、成り立ちません。
よって、x,y,zが整数比の解となることは、ありません。

631 名前:日高 [2020/11/25(水) 18:21:54.89 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

632 名前:日高 [2020/11/25(水) 18:26:20.10 ID:ZnTXkncW.net]
>606
a=1のときに整数比になるかならないかはa=1/3のときの解で決まるので
まず最初にa=1/3の場合を証明しなければならない

a=1のときに整数比とならないならば、aが他の数のときでも、整数比となりません。

633 名前:132人目の素数さん mailto:sage [2020/11/25(水) 18:58:18.68 ID:bsNa5/Zp.net]
>>607
>



634 名前:上記の式は、b^3+c^3=(b+1)^3と同じです。(4)の形なので、成り立ちません。
> よって、x,y,zが整数比の解となることは、ありません。
(3)のyが有理数のときはcは無理数だから (cは(3)のyの有理数の√3/3倍)
おまえはx^3+y^3=(x+1)^3のyが有理数のときに整数比になるかどうかは証明していない
[]
[ここ壊れてます]

635 名前:132人目の素数さん mailto:sage [2020/11/25(水) 18:59:13.44 ID:bsNa5/Zp.net]
>>609
> a=1のときに整数比とならないならば、aが他の数のときでも、整数比となりません

> a=1のときに整数比とならないならば
これは仮定だろ
この仮定が正しいかどうかは最初にa=1/3のときを調べないと分からない

636 名前:132人目の素数さん mailto:sage [2020/11/25(水) 19:22:26.93 ID:IO1MZxYg.net]
>>602
>[(3)の]yが有理数のときに整数比とならないので、yが、無理数のとき、x,y,zが整数比となることはありません。

別のことを書こうとしていたんですが,うっすらとあなたが何を言いたいのかわかってきた気がします。

[以下x,...ではなくs,..s/w,...と書くべき場合があります,解と変数を区別するならきちんとs,..,s/w...とか書くべきですがここは日高氏の表記に従います。
まあ,変数と解をちゃんと書き分けないから,つまり s/w とかきちんと変数xと区別した解を書かないから,いろいろと間違うんだと思います。
それを含めてなんで間違うのかの検討にも資するように,解と変数をあえて区別しません。
自分でも変数と解を区別しない書き込みをしている場合も多いので,他人を責められませんが]

(3)に属するすべての解をyの有理数,無理数をキーに振り分ける。
前者を集合P,後者を集合Qとすると,
集合Pにはx,y,zが整数比となる場合が含まれない。しかしyが有理数である場合はすべて含む。
集合Qにはx,yは整数比となる無理数解が含まれるが,zを含めて整数比となるとすると,共通する無理数wでわると,x,y,z[s/w,t/w..と書かないことが間違いのもと??]が有理数となる。

y[t/w]が有理数であるから,『この解はPに属する』[ここが間違い。yと書くから(3)の解に見えてしまうのだと思う]。
しかし,このことは,yが有理数である場合をすべて含むPにおいてx,y,zが整数比とならないことに反する。
したがってx,y,zが整数比となることはない。

そう言いたいわけだ。
はーーーなるほど,うん,それなりによくできている,というか,なんで日高氏がトンデモの方向に進むのか考え方の筋道が分かった気がする。

>(>357) x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。

という「同じです」理論が(x,y,z)と(x/w,y/w,z/w)の解を「同じです」としてどちらもPに属するという結論に導くわけだ。

でも,残念ながら間違ってまーす。
どこが間違っているのかは指摘してあるので,日高さんもなぜ間違ってしまうのか考えてみましょう。

637 名前:日高 [2020/11/25(水) 19:54:26.93 ID:ZnTXkncW.net]
>610
(3)のyが有理数のときはcは無理数だから (cは(3)のyの有理数の√3/3倍)
おまえはx^3+y^3=(x+1)^3のyが有理数のときに整数比になるかどうかは証明していない

(3)のx,y,zが整数比とならないので、(4)のx,y,zも整数比となりません。

638 名前:日高 [2020/11/25(水) 20:01:17.93 ID:ZnTXkncW.net]
>611
> a=1のときに整数比とならないならば
これは仮定だろ
この仮定が正しいかどうかは最初にa=1/3のときを調べないと分からない

a=1のときは、仮定では、ありません。

639 名前:日高 [2020/11/25(水) 20:08:50.06 ID:ZnTXkncW.net]
>612
>(>357) x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。

という「同じです」理論が(x,y,z)と(x/w,y/w,z/w)の解を「同じです」としてどちらもPに属するという結論に導くわけだ。

でも,残念ながら間違ってまーす。

よく、わかりません。例を挙げていただけないでしょうか。

640 名前:132人目の素数さん mailto:sage [2020/11/25(水) 20:23:04.96 ID:HMCeALG3.net]
反例があげられなければ自分の主張は正しいと思い込むやつ。

641 名前:日高 [2020/11/25(水) 20:40:14.03 ID:ZnTXkncW.net]
>616
反例があげられなければ自分の主張は正しいと思い込むやつ。

何に、対しての、反例でしょうか?

642 名前:132人目の素数さん mailto:sage [2020/11/25(水) 20:41:35.32 ID:icLWioUw.net]
>>614
> a=1のときは、仮定では、ありません。
おまえは証明してないだろ

おまえは自分の証明が正しいと仮定しているんだろうが
おまえの証明が間違いなのは事実なんだよ

643 名前:132人目の素数さん mailto:sage [2020/11/25(水) 20:42:07.00 ID:icLWioUw.net]
>>613
> (3)のx,y,zが整数比とならないので、(4)のx,y,zも整数比となりません。

(3)のx,y,zが整数比とならないことをあんたは証明していないので
(4)のx,y,zも整数比とならないことも証明していない



644 名前:日高 [2020/11/25(水) 20:48:16.75 ID:ZnTXkncW.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

645 名前:132人目の素数さん mailto:sage [2020/11/25(水) 20:51:39.70 ID:HMCeALG3.net]
>>620 日高にならって。
(修正9)
【定理】n≧3のとき、x^n+7y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+7y^n=z^nを、z=x+rとおいてx^n+7y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){7(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+7y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+7y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+7y^n=z^nは自然数解x,y,zを持たない。

しかしx^3+7y^3=z^3にはx=y=1,z=2という自然数解がある。

646 名前:132人目の素数さん mailto:sage [2020/11/25(水) 21:05:45.75 ID:icLWioUw.net]
>>620
> (3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
この段階では
(3)はyが無理数のときxが無理数ならx,y,zが整数比になる場合がないことは未証明
よって
(3)はyが無理数のときxが無理数ならx,y,zが整数比になる可能性がある
これをふまえて次の段階に進むと
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
> (4)の解は(3)の解のa^{1/(n-1)}倍となる。
(3)のyが無理数のときx,y,zが整数比となる可能性があるならば
y[(3)のyでなく(4)のy]が有理数のときに整数比となる可能性がある
日高の証明では(3)のyが無理数のときx,y,zが整数比となる可能性がある
よって以下の結論は間違い
> ∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

647 名前:132人目の素数さん mailto:sage [2020/11/25(水) 21:41:15.51 ID:IO1MZxYg.net]
(>612)をあなた自身が引用している,まさにその部分に例が挙げてあると思います。
同じだといっているのはあなたです。

(s,t,u)と(s/w,t/w,u/w)という解を「同じです」としているから

>x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。

といえるんでしょう?
自分が言ったことが,「よく。わかりません」なんですか?
それは私にはどうしようもありません。

>612そのものが分からないんですか?
それはもう,よく考えて下さいとしか。
>612の指摘の意味が分からないんじゃフェルマーの最終定理の証明なんてとうてい無理です。

611の例はあげません。
抽象的にも考えられるようにするのが数学のトレーニングにもなるでしょう。
それに,例を挙げると,それに対して揚げ足とられると,学んでいますからね。

日々これ学習です。

648 名前:132人目の素数さん mailto:sage [2020/11/25(水) 23:39:32.41 ID:YepMekkj.net]
日高の目に写っている証明と今まで我々が見てきた証明は別ものかもしれない
言い換えるならどちらの陣営が幻覚をみているわけだが
日高が幻覚をみていると断言できない以上は証明は誤りとは言い切れない
(これは証明が正しいと言う意味ではないので注意)

ただ少なくとも私の目からみると 日高の証明は誤りであると確信できる
やはり整数比の無理数解の検討が抜け落ちている(それはFLTと実質同値)
つまるところ日高は何も証明していない しかし本人は決してそれを理解しない

649 名前:132人目の素数さん mailto:sage [2020/11/25(水) 23:49:24.85 ID:U7U+ptDS.net]
>>546

> (3)式に有理数s,t,uを代入しても、成り立たないので、
> (4)式に有理数s,t,uを代入しても、成り立ちません。

(4)の解は(3)の解のa^{1/(n-1)}倍となるのに、なぜ(3)式と(4)式に同じ数を代入するのですか?

650 名前:132人目の素数さん mailto:sage [2020/11/25(水) 23:52:36.46 ID:U7U+ptDS.net]
>>546

(3)式と(4)式に同じ数を代入するということは、

x^2+y^2=(x+2)^2にx=3,y=4,z=5を代入すると成り立つので
x^2+y^2=(x+√3)^2にx=3,y=4,z=5を代入すると成り立つ、ということですか?

651 名前:132人目の素数さん [2020/11/25(水) 23:56:42.73 ID:nIMnTpLv.net]
>>604
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となります。

それは明確に間違っています。
方程式(3)の解(x,y,z)が無理数で整数比をなしていても、(3)の有理数解(x,y,z)は存在しません。
理由がわかりますか?

652 名前:132人目の素数さん mailto:sage [2020/11/26(木) 00:21:43.86 ID:XxWjI9+d.net]
>>546

s^n+t^n=u^nはr^(n-1)=nのときではないので、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となりません。
s^n+t^n=u^nはr^(n-1)=anのときなので、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となります。

(4)の解は(3)の解のa^{1/(n-1)}倍となるので、(4)の解がs,t,uのとき、(3)の解はx=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}です。

653 名前:132人目の素数さん mailto:sage [2020/11/26(木) 01:04:11.05 ID:Ep2UGt23.net]
>>627

> 方程式(3)の解(x,y,z)が無理数で整数比をなしていても、(3)の有理数解(x,y,z)は存在しません。

ふと思ったのだが「方程式(3)の解(x,y,z)が無理数で整数比をな」すことは実際にはありえない。
だからこういう複合命題を日高は理解できないんじゃないか?



654 名前:132人目の素数さん [2020/11/26(木) 02:37:04.21 ID:kusaMiE2.net]
日高さんに質問する時は一問一答。
二問三問同時に質問すると、一番誤魔化しが効きそうな質問一問だけフニャフニャ答えて残りの質問は無かった事にされるから。
一問一答でひとつひとつにyes noで答えさせて言質取るのがいいと思う。

ワイルズの論文読んだのかyes no言わせる時も奴はフニャフニャ有耶無耶にして逃げようとしてたのが滑稽だったな。
奴はいつも逃げる事ばかりを考えているから。

655 名前:132人目の素数さん mailto:sage [2020/11/26(木) 02:49:18.53 ID:QoPTCHC1.net]
核心をつかれると 最終定理は正しいので そのケースは発生しないといいだす
証明すべきものを証明の中で使用するというのは証明の体をなしてないのだが

検索でいろいろさがしたところ どうやらご高齢の人のようだ
いろんなところで悪さを働いていたようだから地獄行きを覚悟しとけ

656 名前:132人目の素数さん mailto:sage [2020/11/26(木) 02:53:16.58 ID:QoPTCHC1.net]
こやつの投稿をやめさせたいなら
数学ではなくてそれ以外のもので対応するしかない
例えば こやつがやってきた悪事を公開しつづけるとかな
日高を止めるには日高面に落ちるしかないというアレ

657 名前:132人目の素数さん [2020/11/26(木) 04:52:17.01 ID:QLfxDHmP.net]
団塊の世代の特徴がよーく出とる

他人の迷惑を考えない
自己中心的思考
パソコンもろくに使えない
自分ができない事を隠して人にやらせようとする
嘘はバレなきゃ嘘じゃないと思っている
嘘はバレても認めなければ罪ではない思っている
失敗を過剰に隠そうとする
しつこくゴリ押しすれば何でも通ると思っている
学者しようとしない
見聞きしただけで自分自身がやった気になっている

658 名前:日高 [2020/11/26(木) 08:30:48.72 ID:LF+RWpxw.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

659 名前:日高 [2020/11/26(木) 08:47:55.03 ID:LF+RWpxw.net]
>618
> a=1のときは、仮定では、ありません。
おまえは証明してないだろ

おまえは自分の証明が正しいと仮定しているんだろうが
おまえの証明が間違いなのは事実なんだよ

私の証明の間違い部分を、指摘していただけないでしょうか。

660 名前:日高 [2020/11/26(木) 08:50:45.80 ID:LF+RWpxw.net]
>619
(3)のx,y,zが整数比とならないことをあんたは証明していないので
(4)のx,y,zも整数比とならないことも証明していない

633で、(3)のx,y,zが整数比とならないことを私は証明しています。

661 名前:日高 [2020/11/26(木) 08:53:13.84 ID:LF+RWpxw.net]
>621
しかしx^3+7y^3=z^3にはx=y=1,z=2という自然数解がある。

式が、違います。

662 名前:日高 [2020/11/26(木) 09:05:47.96 ID:LF+RWpxw.net]
>622
(3)のyが無理数のときx,y,zが整数比となる可能性があるならば
y[(3)のyでなく(4)のy]が有理数のときに整数比となる可能性がある
日高の証明では(3)のyが無理数のときx,y,zが整数比となる可能性がある

a=1のとき、
(3)のyが有理数のとき、x,y,zが整数比とならないので、
(3)のyが無理数のときx,y,zが整数比となる可能性は、ありません。

663 名前:日高 [2020/11/26(木) 09:26:56.11 ID:LF+RWpxw.net]
>623
>x^3+4^3=(x+2)^3…(a)と、x^3+(2√3)^3=(x+√3)^3…(b)は同じです。

(a)と、(b)のx,y,zの比が同じという意味です。
等式の性質により、(b)の両辺に、(2/√3)^3をかけると、
X^3+4^3=(X+2)^3となります。



664 名前:日高 [2020/11/26(木) 09:30:45.15 ID:LF+RWpxw.net]
>624
ただ少なくとも私の目からみると 日高の証明は誤りであると確信できる
やはり整数比の無理数解の検討が抜け落ちている(それはFLTと実質同値)
つまるところ日高は何も証明していない しかし本人は決してそれを理解しない

整数比の無理数解の検討は、
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
で、やっています。

665 名前:日高 [2020/11/26(木) 09:33:50.78 ID:LF+RWpxw.net]
>625
(4)の解は(3)の解のa^{1/(n-1)}倍となるのに、なぜ(3)式と(4)式に同じ数を代入するのですか?

(4)が成り立たないことを、言うためです。

666 名前:日高 [2020/11/26(木) 09:40:33.74 ID:LF+RWpxw.net]
>626
(3)式と(4)式に同じ数を代入するということは、

x^2+y^2=(x+2)^2にx=3,y=4,z=5を代入すると成り立つので
x^2+y^2=(x+√3)^2にx=3,y=4,z=5を代入すると成り立つ、ということですか?

いいえ、
x^2+y^2=(x+√3)^2にx=3*√3/2,y=4*√3/2,z=5*√3/2を代入すると成り立つ、ということです

667 名前:132人目の素数さん [2020/11/26(木) 09:53:08.84 ID:07ZdacQW.net]
日高さんの証明はワイルズの証明より遥かに難解ですね。
ワイルズの証明は少なくとも論文査読にあたったレフリー達は納得した。また今のところ世界で論文を読んだであろう数千人か数万人かわからないが、数学者達から目立った反論は出ていない。
対して日高さんの証明は、今のところ世界で誰も納得していない。なぜならワイルズの証明より簡単じゃないから。日高脳内妄想論理を理解し、日高破茶滅茶理論を理解しないといけないから難易度撃高。
日高さんの証明は何のためだっけ?全然簡単じゃないじゃん。

668 名前:日高 [2020/11/26(木) 09:59:41.19 ID:LF+RWpxw.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

669 名前:132人目の素数さん mailto:sage [2020/11/26(木) 10:36:53.85 ID:PSX4Fzx4.net]
>>640
> 整数比の無理数解の検討は、
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
> で、やっています。
やったつもりになって自己満足してます。の間違い。
yが無理数のときを考えているのに、yが有理数になっちゃったんだろ?

残念ながら、(3)を満たす正のx,y,zで比が同じものはただ一つしかない。
だから、
> (3)のyが無理数のとき、
を考える以上、正の定数倍とかで変形したら(3)の解ではなくなる。これは数学的事実。
なので
>yが有理数のとき
に帰着するのは不可能。

結局、結論である
> yが有理数のときに整数比となる。
を導くだけの証拠が全く提示されていない。


この人が犯人だと思います。証拠は自分が思うからです。とかいって誤認逮捕しているが如し。

一行だけの誤魔化し返信は激しく迷惑なので、返信不要。

670 名前:日高 [2020/11/26(木) 12:32:53.89 ID:LF+RWpxw.net]
>627
それは明確に間違っています。
方程式(3)の解(x,y,z)が無理数で整数比をなしていても、(3)の有理数解(x,y,z)は存在しません。
理由がわかりますか?

よくわかりません。例をあげていただけないでしょうか。

671 名前:日高 [2020/11/26(木) 12:37:48.84 ID:LF+RWpxw.net]
>628
s^n+t^n=u^nはr^(n-1)=anのときなので、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となります。

(4)の解は(3)の解のa^{1/(n-1)}倍となるので、(4)の解がs,t,uのとき、(3)の解はx=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}です。

その通りです。

672 名前:132人目の素数さん mailto:sage [2020/11/26(木) 13:26:47.72 ID:X5QUtSPJ.net]
>(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。

(a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに整数比となる。
(b) (3)のyが無理数のとき、x,y,zが整数比となるならば、(4)でyが有理数のときに整数比となる。

あなたの主張は(a)(b)どっちなんですか?
何度いっても補足されませんが,いま「何について」議論しているのかちゃんと明示しましょう。

そして,「整数比となる」からどうなのかも明示しましょう。
これも何度言っても補足されないんですけど。
これは正しい指摘ではないんですか?
文意を明確にしましょう,という提案

673 名前:にさえ耳を貸すつもりがないなら,いったい何のために【証明】を修正し続けているんですか?
誰にも顧みられなくなったときに勝利宣言するためですか?

そう言われたくないのなら,「文意を明確に」,これぐらい実行しましょうよ。
[]
[ここ壊れてます]



674 名前:132人目の素数さん mailto:sage [2020/11/26(木) 14:00:03.10 ID:kfMMk8ab.net]
>>644
 この産業廃棄物みたいな文字と数字の羅列は何を意味しているのですか?

675 名前:132人目の素数さん [2020/11/26(木) 15:54:38.08 ID:V8+M823F.net]
スレタイ詐欺いつまでやるの?
フランス料理の看板の店に入ったら、頭のおかしい爺さんが作ったクソ不味い国籍不明の創作料理出てきた感じ。

676 名前:132人目の素数さん mailto:sage [2020/11/26(木) 16:31:41.57 ID:5WxLWrxp.net]
いくら非難しても、定型文しか返ってこないから書くだけ無駄ですよ。
感情が全くないみたいだし、たぶん人間ではないのでしょう。

677 名前:132人目の素数さん mailto:sage [2020/11/26(木) 17:44:54.75 ID:QoPTCHC1.net]
人間にしては大学教授にメールしたり

678 名前:132人目の素数さん mailto:sage [2020/11/26(木) 18:01:02.55 ID:w+OyZPyd.net]
>>636
> >619
> (3)のx,y,zが整数比とならないことをあんたは証明していないので
> (4)のx,y,zも整数比とならないことも証明していない
>
> 633で、(3)のx,y,zが整数比とならないことを私は証明しています。

証明してないだろ

>>634では
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。

p=2のとき
x^2+y^2=(x+2)^2つまりa=1で(3)のyが無理数のときx,y,zが整数比となる可能性は全くないから

>>638
> a=1のとき、
> (3)のyが有理数のとき、x,y,zが整数比とならないので、
> (3)のyが無理数のときx,y,zが整数比となる可能性は、ありません

これは間違い

679 名前:132人目の素数さん [2020/11/26(木) 18:08:49.93 ID:V8+M823F.net]
学会誌の論文査読が大学の教授に送られると、だいたい実際見ることになるのは助教とか講師だな。
助教や講師にとってクソ雑用作業のひとつ。

教授に直接メール送っても、さらに多忙な教授は見るはずがなく、助教や講師にメール転送して「これ見ておいて」で片付けられる。

このスレの証明もどきだったら助教や講師は3秒眺めてで「これ駄目っすね」って教授に返信。このスレの優しい住人みたく丁寧に見てくれる可能性は0%。

680 名前:日高 [2020/11/26(木) 18:24:17.06 ID:LF+RWpxw.net]
(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ

681 名前:日高 [2020/11/26(木) 18:30:53.92 ID:LF+RWpxw.net]
>629
ふと思ったのだが「方程式(3)の解(x,y,z)が無理数で整数比をな」すことは実際にはありえない。
だからこういう複合命題を日高は理解できないんじゃないか?

違います。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
です。

682 名前:日高 [2020/11/26(木) 18:33:48.20 ID:LF+RWpxw.net]
>630
日高さんに質問する時は一問一答。

なるべく、そうしてください。
勘違いが、多いようです。

683 名前:日高 [2020/11/26(木) 18:36:06.09 ID:LF+RWpxw.net]
>631
核心をつかれると 最終定理は正しいので そのケースは発生しないといいだす

何番で、言ったでしょうか?



684 名前:日高 [2020/11/26(木) 18:38:30.96 ID:LF+RWpxw.net]
>632
日高を止めるには日高面に落ちるしかないというアレ

どういう意味でしょうか?

685 名前:日高 [2020/11/26(木) 18:40:48.41 ID:LF+RWpxw.net]
>633
他人の迷惑を考えない
自己中心的思考
パソコンもろくに使えない
自分ができない事を隠して人にやらせようとする
嘘はバレなきゃ嘘じゃないと思っている
嘘はバレても認めなければ罪ではない思っている
失敗を過剰に隠そうとする
しつこくゴリ押しすれば何でも通ると思っている
学者しようとしない
見聞きしただけで自分自身がやった気になっている

何番のことでしょうか?

686 名前:日高 [2020/11/26(木) 19:23:20.88 ID:LF+RWpxw.net]
>643
なぜならワイルズの証明より簡単じゃないから。日高脳内妄想論理を理解し、日高破茶滅茶理論を理解しないといけないから難易度撃高。

私の証明は、単純です。

687 名前:日高 [2020/11/26(木) 19:30:00.16 ID:LF+RWpxw.net]
>648
(a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに整数比となる。
(b) (3)のyが無理数のとき、x,y,zが整数比となるならば、(4)でyが有理数のときに整数比となる。

あなたの主張は(a)(b)どっちなんですか?
何度いっても補足されませんが,いま「何について」議論しているのかちゃんと明示しましょう。

これは、(a)(b)どちらについても、言えます。
等式の性質により、言えます。一般的な式に対しても、言えます。

688 名前:132人目の素数さん [2020/11/26(木) 19:54:14.12 ID:V8+M823F.net]
>>661 単純明快意味不明w
評価する側は助かるわ。
一瞬でゴミ箱行き判定できるからなw

689 名前:日高 [2020/11/26(木) 19:55:02.43 ID:LF+RWpxw.net]
>649
この産業廃棄物みたいな文字と数字の羅列は何を意味しているのですか?

どの部分が、産業廃棄物みたいでしょうか?

690 名前:日高 [2020/11/26(木) 19:59:55.84 ID:LF+RWpxw.net]
>650
スレタイ詐欺いつまでやるの?
フランス料理の看板の店に入ったら、頭のおかしい爺さんが作ったクソ不味い国籍不明の創作料理出てきた感じ。

どの部分が、スレタイ詐欺でしょうか?

691 名前:日高 [2020/11/26(木) 20:03:52.75 ID:LF+RWpxw.net]
>651
いくら非難しても、定型文しか返ってこないから書くだけ無駄ですよ。
感情が全くないみたいだし、たぶん人間ではないのでしょう。

何番のことでしょうか?

692 名前:日高 [2020/11/26(木) 20:06:58.99 ID:LF+RWpxw.net]
>652
人間にしては大学教授にメールしたり

その、大学教授の名前は?

693 名前:132人目の素数さん mailto:sage [2020/11/26(木) 20:10:26.23 ID:n+GBy5YG.net]
>>662
> >648
> (a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに整数比となる。
> (b) (3)のyが無理数のとき、x,y,zが整数比となるならば、(4)でyが有理数のときに整数比となる。
>
> あなたの主張は(a)(b)どっちなんですか?
> 何度いっても補足されませんが,いま「何について」議論しているのかちゃんと明示しましょう。
>
> これは、(a)(b)どちらについても、言えます。
> 等式の性質により、言えます。一般的な式に対しても、言えます。

「(a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに<<<整数比となる。>>>」
(a)は言えないんじゃないかな。
【証明】>>655 で、
> (3)はyが有理数のとき、... x,y,zは<<<整数比とならない。>>>
って自分で書いてるよ。



694 名前:日高 [2020/11/26(木) 20:14:25.36 ID:LF+RWpxw.net]
>653
> a=1のとき、
> (3)のyが有理数のとき、x,y,zが整数比とならないので、
> (3)のyが無理数のときx,y,zが整数比となる可能性は、ありません

これは間違い

どの部分が間違いでしょうか?

695 名前:日高 [2020/11/26(木) 20:18:05.95 ID:LF+RWpxw.net]
>654
教授に直接メール送っても、さらに多忙な教授は見るはずがなく、助教や講師にメール転送して「これ見ておいて」で片付けられる。

そんなことは、ありません。それは、思い込みです。

696 名前:日高 [2020/11/26(木) 20:19:48.74 ID:LF+RWpxw.net]


697 名前:(修正9)
【定理】n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+y^n=z^nは自然数解x,y,zを持たない。

【定理】n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)をr{(y/r)^2-1}=a2x(1/a)…(2)と変形する。
(2)はa=1、r=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(2)はa=1以外、r=a2のとき、x^2+y^2=(x+a2)^2…(4)となる。
(3)はyが有理数のとき、xは有理数となる。(4)の解は(3)の解のa倍となる。
∴n=2のとき、x^n+y^n=z^nは自然数解x,y,zを持つ
[]
[ここ壊れてます]

698 名前:日高 [2020/11/26(木) 20:23:06.12 ID:LF+RWpxw.net]
>663
>>661 単純明快意味不明w
評価する側は助かるわ。
一瞬でゴミ箱行き判定できるからなw

どの部分が、意味不明なのでしょうか?

699 名前:日高 [2020/11/26(木) 20:27:05.97 ID:LF+RWpxw.net]
>668
「(a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに<<<整数比となる。>>>」
(a)は言えないんじゃないかな。
【証明】>>655 で、
> (3)はyが有理数のとき、... x,y,zは<<<整数比とならない。>>>
って自分で書いてるよ。

yが無理数のとき、「x,y,zが整数比となるならば、」と書いています。

700 名前:132人目の素数さん mailto:sage [2020/11/26(木) 22:06:05.29 ID:w+OyZPyd.net]
>>669
> >653
> > a=1のとき、
> > (3)のyが有理数のとき、x,y,zが整数比とならないので、
> > (3)のyが無理数のときx,y,zが整数比となる可能性は、ありません
>
> これは間違い
>
> どの部分が間違いでしょうか?

そのすぐ上に書いてあるだろ無能

> p=2のとき
> x^2+y^2=(x+2)^2つまりa=1で(3)のyが無理数のときx,y,zが整数比となる可能性は全くないから

x^2+y^2=(x+2)^2つまりa=1で(3)のyが無理数のときx,y,zが整数比とならない
x^2+y^2=(x+2)^2つまりa=1で(3)のyが有理数のときx,y,zは整数比となる

a=1のとき
(3)のyが無理数のときx,y,zが整数比とならないならばyが有理数のときに整数比となる
> (3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
この2つを踏まえてa=1つまり(3)のyが有理数のときx,y,zが整数比とならないと仮定すると
> > a=1のとき、
> > (3)のyが有理数のとき、x,y,zが整数比とならないので、
> > (3)のyが無理数のときx,y,zが整数比となる可能性は、ありません
>
> これは間違い

701 名前:132人目の素数さん mailto:sage [2020/11/26(木) 22:19:07.08 ID:DvGTMhdn.net]
このまま死ぬまでやってそう

702 名前:132人目の素数さん mailto:sage [2020/11/26(木) 22:20:02.32 ID:kfMMk8ab.net]
羯 多 呪 多 得 想 掛 所 亦 無 耳 不 是 異 蘊 観 摩
諦 呪 能 是 阿 究 礙 得 無 意 鼻 増 舎 色 皆 自 訶
菩 即 除 大 耨 竟 無 故 老 識 舌 不 利 色 空 在 般
菩 説 一 神 多 涅 掛 菩 死 界 身 減 子 即 度 菩 若
提 呪 切 呪 羅 槃 礙 提 盡 無 意 是 是 是 一 薩 波
娑 曰 苦 是 三 三 故 薩 無 無 無 故 諸 空 切 行 羅
婆 羯 真 大 藐 世 無 陀 苦 明 色 空 法 空 苦 深 蜜
訶 諦 実 明 三 諸 有 依 集 亦 聲 中 空 即 厄 般 多
般 羯 不 呪 菩 佛 恐 般 滅 無 香 無 相 是 舎 若 心
若 諦 虚 是 提 依 怖 若 道 無 味 色 不 色 利 波 経
心 波 故 無 故 般 遠 波 無 明 觸 無 生 受 子 羅
経 羅 説 上 知 若 離 羅 智 盡 法 受 不 想 色 蜜
羯 般 呪 般 波 一 蜜 亦 乃 無 想 滅 行 不 多
諦 若 是 若 羅 切 多 無 至 眼 行 不 識 異 時
波 波 無 波 蜜 顛 故 得 無 界 識 垢 亦 空 照
羅 羅 等 羅 多 倒 心 以 老 乃 無 不 復 空 見
僧 蜜 等 蜜 故 夢 無 無 死 至 眼 浄 如 不 五

703 名前:132人目の素数さん [2020/11/26(木) 22:20:12.44 ID:2aUCUKlc.net]
>>あなたの証明もどきのメールだと、タイトル見た瞬間に転送される事もなく削除かもねw
助教さん達も暇じゃないからねw



704 名前:132人目の素数さん [2020/11/26(木) 22:21:10.98 ID:2aUCUKlc.net]
>>670 あなたの証明もどきのメールだと、タイトル見た瞬間に転送される事もなく削除かもねw
助教さん達も暇じゃないからねw

705 名前:132人目の素数さん [2020/11/26(木) 22:25:40.16 ID:2aUCUKlc.net]
秘書のいる研究室だったら、教授の目に触れる事なく有能な秘書が削除することもあるかもなw
こんな妄想文字列スパムメールと変わらないからなw

706 名前:132人目の素数さん mailto:sage [2020/11/26(木) 22:43:34.97 ID:kfMMk8ab.net]
羯 多 呪 多 得 想 掛 所 亦 無 耳 不 是 異 蘊 観  摩
諦 呪 能 是 阿 究 礙 得 無 意 鼻 増 舎 色 皆 自  訶
菩 即 除 大 耨 竟 無 故 老 識 舌 不 利 色 空 在  般
菩 説 一 神 多 涅 掛 菩 死 界 身 減 子 即 度 菩  若
提 呪 切 呪 羅 槃 礙 提 盡 無 意 是 是 是 一 薩  波
娑 曰 苦 是 三 三 故 薩 無 無 無 故 諸 空 切 行  羅
婆 羯 真 大 藐 世 無 陀 苦 明 色 空 法 空 苦 深  蜜
訶 諦 実 明 三 諸 有 依 集 亦 聲 中 空 即 厄 般  多
般 羯 不 呪 菩 佛 恐 般 滅 無 香 無 相 是 舎 若  心
若 諦 虚 是 提 依 怖 若 道 無 味 色 不 色 利 波  経
心 波 故 無 故 般 遠 波 無 明 觸 無 生 受 子 羅
経 羅 説 上 知 若 離 羅 智 盡 法 受 不 想 色 蜜
  羯 般 呪 般 波 一 蜜 亦 乃 無 想 滅 行 不 多
  諦 若 是 若 羅 切 多 無 至 眼 行 不 識 異 時
  波 波 無 波 蜜 顛 故 得 無 界 識 垢 亦 空 照
  羅 羅 等 羅 多 倒 心 以 老 乃 無 不 復 空 見
  僧 蜜 等 蜜 故 夢 無 無 死 至 眼 浄 如 不 五

707 名前:132人目の素数さん mailto:sage [2020/11/26(木) 22:45:38.44 ID:kfMMk8ab.net]
羯 多 呪 多 得 想 掛 所 亦 無 耳 不 是 異 蘊 観  摩
諦 呪 能 是 阿 究 礙 得 無 意 鼻 増 舎 色 皆 自  訶
菩 即 除 大 耨 竟 無 故 老 識 舌 不 利 色 空 在  般
菩 説 一 神 多 涅 掛 菩 死 界 身 減 子 即 度 菩  若
提 呪 切 呪 羅 槃 礙 提 盡 無 意 是 是 是 一 薩  波
娑 曰 苦 是 三 三 故 薩 無 無 無 故 諸 空 切 行  羅
婆 羯 真 大 藐 世 無 陀 苦 明 色 空 法 空 苦 深  蜜
訶 諦 実 明 三 諸 有 依 集 亦 聲 中 空 即 厄 般  多
般 羯 不 呪 菩 佛 恐 般 滅 無 香 無 相 是 舎 若  心
若 諦 虚 是 提 依 怖 若 道 無 味 色 不 色 利 波  経
心 波 故 無 故 般 遠 波 無 明 觸 無 生 受 子 羅
経 羅 説 上 知 若 離 羅 智 盡 法 受 不 想 色 蜜
□ 羯 般 呪 般 波 一 蜜 亦 乃 無 想 滅 行 不 多
□ 諦 若 是 若 羅 切 多 無 至 眼 行 不 識 異 時
□ 波 波 無 波 蜜 顛 故 得 無 界 識 垢 亦 空 照
□ 羅 羅 等 羅 多 倒 心 以 老 乃 無 不 復 空 見
□ 僧 蜜 等 蜜 故 夢 無 無 死 至 眼 浄 如 不 五

708 名前:132人目の素数さん mailto:sage [2020/11/27(金) 00:37:13.90 ID:kBrSyULa.net]
>>671 日高にならって。
(修正9)
【定理】n≧3のとき、x^n+8y^n=z^nは自然数解x,y,zを持たない。
【証明】x^n+8y^n=z^nを、z=x+rとおいてx^n+8y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){8(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+8y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+8y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyが有理数のとき、xは無理数となるので、x,y,zは整数比とならない。
(3)のyが無理数のとき、x,y,zが整数比となるならば、yが有理数のときに整数比となる。
(4)の解は(3)の解のa^{1/(n-1)}倍となる。
∴n≧3のとき、x^n+8y^n=z^nは自然数解x,y,zを持たない。

どうでしょうか。

709 名前:132人目の素数さん mailto:sage [2020/11/27(金) 00:46:15.74 ID:YoZtTjvw.net]
>>638
>a=1のとき、
>(3)のyが有理数のとき、x,y,zが整数比とならないので、
>(3)のyが無理数のときx,y,zが整数比となる可能性は、ありません。

ここが日高理論が数学から,というより常識からねじ曲がっていく決定的なポイントかな。
このように解してしまうということは,(3)でyが有理数のときに得た整数比となる解の不存在という結論が(3)の解全体に拡張され普遍的に妥当する,と考えていることになる。
そう考えるから,確定済の「整数比となる解の不存在性」を理由にして,(3)の「整数比となる無理数解の不存在性」が導かれる。
そして,解を拡大しても解の比が同じであるとして,一般

710 名前:式である(4)にまで,その「整数比とならない解の不存在性」が及ぶ。
で,フェルマーの最終定理の証明に成功した,万歳!と思い込む。

日高さん,あなたが支持を得られないのは,上の論理に決定的な誤りがあるからです。
(3)のyが有理数のときと(3)のyが無理数のときは,解の比に関しては完全に並列的な関係です。
それぞれ個別に検討しなければなりません。
つまり,一方で得た結論が他方に及ぶことはありません。
(3)の解の一部(部分集合)について得た解の比の結論は,その部分集合限定の結論でしかありません。
(3)でyが有理数の場合に得た「整数比とならない解の不存在性」という結論は,(3)でyが有理数の場合とその解を定数倍した(4)の解の一部に妥当します。

しかし,(3)でyが無理数の場合と,その解を定数倍した(4)の解の残部[上での(4)の解の補集合]については,どうなるか白紙状態です。

あなたが言っていることは
X+Y=(1+√2)とおくと,Yが有理数ならば,Xは無理数なのでX,Y,Zは整数比とならない。
整数比となることがないことが示されたので,Yが無理数のときもX,Y,Zは整数比とならない。
といっているのと同じです。

こうかけばあなたの論理がおかしいことがわかるでしょう。
ああ,式が違います,というのはなしにして下さいね。論理の展開の仕方が同じであるといっているんですから。
[]
[ここ壊れてます]

711 名前:132人目の素数さん mailto:sage [2020/11/27(金) 01:26:25.12 ID:r8WoLrsb.net]
>>641

>>546とおなじように(3)式と(4)式に同じ数を代入します。

x^2+y^2=(x+2)^2…(3)にx=3*√3/2,y=4*√3/2,z=5*√3/2を代入して成り立たたない。
x^2+y^2=(x+√3)^2…(4)にx=3*√3/2,y=4*√3/2,z=5*√3/2を代入すると成り立つ。

(3)式と(4)式に同じ数を代入しても、(4)が成り立たないことを、言えません。

712 名前:132人目の素数さん mailto:sage [2020/11/27(金) 01:30:04.08 ID:r8WoLrsb.net]
>>642

あなたには、3と3*√3が同じ数に見えるのですか?

>>546に書いてあるのは、
> (3)式に有理数s,t,uを代入しても、成り立たないので、
> (4)式に有理数s,t,uを代入しても、成り立ちません。
両方ともs,t,uで、同じ数です。

しかし、3と3*√3/2は別の数です。4と4*√3/2は別の数です。5と5*√3/2は別の数です。

713 名前:132人目の素数さん mailto:sage [2020/11/27(金) 01:37:21.27 ID:r8WoLrsb.net]
>>647

s^n+t^n=u^nはr^(n-1)=nのときではないので、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となりません。
(4)の解がs,t,uのとき、(3)の解はx=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}です。
y=t/a^{1/(n-1)}は無理数です。x=s/a^{1/(n-1)},y=t/a^{1/(n-1)},z=u/a^{1/(n-1)}は整数比です。


(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となる。
(4)のyが有理数のときに整数比となるとき、(3)のyが無理数であり、整数比となる。
(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となる。
(4)のyが有理数のときに整数比となるとき、(3)のyが無理数であり、整数比となる。
(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となる。
(4)のyが有理数のときに整数比となるとき、(3)のyが無理数であり、整数比となる。

堂々巡りです。



714 名前:132人目の素数さん mailto:sage [2020/11/27(金) 03:01:34.18 ID:r8WoLrsb.net]
>>662

x^2+y^2=(x+2)^2…(3)を満たす、x=3,y=4,z=5以外の、3:4:5となる無理数解を書いてください。
かけなければ、
(3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに整数比となる。
はウソです。

715 名前:132人目の素数さん mailto:sage [2020/11/27(金) 04:04:37.15 ID:iCersrL7.net]
>>673
> >668
> 「(a) (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)でyが有理数のときに<<<整数比となる。>>>」
> (a)は言えないんじゃないかな。
> 【証明】>>655 で、
> > (3)はyが有理数のとき、... x,y,zは<<<整数比とならない。>>>
> って自分で書いてるよ。
>
> yが無理数のとき、「x,y,zが整数比となるならば、」と書いています。

言葉だけだと勘違いしそうなので、数式で考えます。
・前段「(3)のyが無理数のとき、「x,y,zが整数比となるならば、」」は以下の式であらわされます。
(sw)^n + (tw)^n = ((sw) + n^{1/(n-1)})^n  ...式(イ)
(s, t は有理数、w は無理数)
・後段「(3)でyが有理数のときに整数比となる。」は以下の式であらわされます。(まだ式(ロ)は成り立っていない事に注意)
b^n + c^n = (b + n^{1/(n-1)})^n  ...式(ロ)
(b, c, (b + n^{1/(n-1)})もかな? は有理数で整数比)

式(ロ)と「有理数で整数比」が成り立つように、
b, c を s, t, w, (【証明】で使った記号など) であらわしてください。
それができればあなたの主張(a)は通ります。

716 名前:132人目の素数さん mailto:sage [2020/11/27(金) 04:07:09.15 ID:iCersrL7.net]
>>688 続き
【例】
b = s
c = t
としてみましょう。
このとき満たす式は、
s^n + t^n = (s + (n^{1/(n-1)})/w)^n  式(イ) の両辺を w^n で割る
b^n + c^n = (b + (n^{1/(n-1)})/w)^n  s を b、 t を c に置き換え
であって
b^n + c^n = (b + n^{1/(n-1)})^n  ...式(ロ)
ではないですね。これは失敗です。

条件を満たすあらわしかたがあるのでしょうか。

717 名前:日高 [2020/11/27(金) 05:41:57.84 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

718 名前:132人目の素数さん [2020/11/27(金) 05:43:08.24 ID:v0+XtMcu.net]
>>670

そのように断言できる証拠は?
日高さんは不明あるいは不確定な事を、偏見と妄想で断言してしまう癖がありますね。
証明もどきもその癖が出てしまって失敗してますね。

719 名前:132人目の素数さん mailto:sage [2020/11/27(金) 05:55:07.50 ID:qKRYyEV/.net]


720 名前:tェルマー最終定理の n=3 の歴史について

現代の立場からみて 数学的に正しい証明が初めて世にでたのは
kummerの1850年前後の研究成果の正則素数の応用まで遡る
よく勘違いされやすいのはオイラーが初めて証明したということだが
これは数学的には誤りで彼の証明にはギャップがあったと後世で指摘されている
オイラーの後にLegendreやKauslerもn=3の場合の証明を書いているが
オイラーと同じギャップがあったと指摘されている
1825年にn=5の場合を完全に証明したDirichletはその時点でn=3の正しい証明をかく力があったと容易に推察される(彼はLegendreの誤りを敢えて指摘しなかった)
[]
[ここ壊れてます]

721 名前:日高 [2020/11/27(金) 06:05:36.25 ID:dGNpgNAA.net]
>674
(3)のyが有理数のとき、x,y,zが整数比とならないので、
(3)のyが無理数のときx,y,zが整数比となる可能性は、ありません

> これは間違い

間違いでは、ありません。
(sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^n。(s,t,uは有理数、wは無理数)

722 名前:日高 [2020/11/27(金) 06:08:36.76 ID:dGNpgNAA.net]
>675
このまま死ぬまでやってそう

死ぬまでやります。

723 名前:日高 [2020/11/27(金) 06:10:34.88 ID:dGNpgNAA.net]
>676
羯 多 呪 多 得 想 掛 所 亦 無 耳 不 是 異 蘊 観 摩

どういう意味でしょうか?



724 名前:日高 [2020/11/27(金) 06:13:09.87 ID:dGNpgNAA.net]
>677
>>あなたの証明もどきのメールだと、タイトル見た瞬間に転送される事もなく削除かもねw
助教さん達も暇じゃないからねw

そんなことは、ありません。あなたの思い込みです。

725 名前:日高 [2020/11/27(金) 06:15:19.90 ID:dGNpgNAA.net]
>679
秘書のいる研究室だったら、教授の目に触れる事なく有能な秘書が削除することもあるかもなw
こんな妄想文字列スパムメールと変わらないからなw

そんなことは、ありません。あなたの思い込みです。

726 名前:日高 [2020/11/27(金) 06:17:53.17 ID:dGNpgNAA.net]
>682
∴n≧3のとき、x^n+8y^n=z^nは自然数解x,y,zを持たない。

どうでしょうか。

式が、違います。

727 名前:日高 [2020/11/27(金) 06:32:51.76 ID:dGNpgNAA.net]
>683
あなたが言っていることは
X+Y=(1+√2)とおくと,Yが有理数ならば,Xは無理数なのでX,Y,Zは整数比とならない。
整数比となることがないことが示されたので,Yが無理数のときもX,Y,Zは整数比とならない。
といっているのと同じです。

X+Y=(1+√2)とおくと,Yが有理数ならば,Xは無理数なのでX,Y,Zは整数比とならない。
整数比となることがないことが示されたので,Yが無理数のときもX,Y,Zは整数比とならない。

これは、正しいです。

728 名前:日高 [2020/11/27(金) 06:36:04.58 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

729 名前:日高 [2020/11/27(金) 06:40:47.98 ID:dGNpgNAA.net]
>684
(3)式と(4)式に同じ数を代入しても、(4)が成り立たないことを、言えません。

そうですね。

730 名前:日高 [2020/11/27(金) 06:45:02.30 ID:dGNpgNAA.net]
>685
> (3)式に有理数s,t,uを代入しても、成り立たないので、
> (4)式に有理数s,t,uを代入しても、成り立ちません。
両方ともs,t,uで、同じ数です。

訂正します。
(4)式に有理数を代入しても、成り立ちません。

731 名前:132人目の素数さん mailto:sage [2020/11/27(金) 06:49:20.07 ID:pyWKSiQT.net]
>>693
> 間違いでは、ありません。
> (sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^n。(s,t,uは有理数、wは無理数)
間違いではありませんではなくて
おまえがx^2+y^2=(x+2)^2…(3)の解x,y,zでyが無理数のときに整数比になるものが
あることを示してそこから有理数解を持つことを導いてそれを書けば済むことだろ
x^2+y^2=(x+2)^2…(3)においてyが無理数のときに整数比になるんだったら
まずはじめに(sw)^2+(tw)^2=(uw)^2が(3)につまりr=uw-sw=2になるように
s,t,u,w (s,t,uは有理数、wは無理数)を選んでみろよ

732 名前:日高 [2020/11/27(金) 06:51:26.06 ID:dGNpgNAA.net]
>686
(3)のyが無理数のとき、x,y,zが整数比となるならば、(4)のyが有理数のときに整数比となる。

その通りです。

733 名前:日高 [2020/11/27(金) 06:57:25.86 ID:dGNpgNAA.net]
>687
x^2+y^2=(x+2)^2…(3)を満たす、x=3,y=4,z=5以外の、3:4:5となる無理数解を書いてください。

x^2+y^2=(x+2)^2…(3)を満たす、無理数解は、ありません。



734 名前:132人目の素数さん mailto:sage [2020/11/27(金) 07:02:38.37 ID:YoZtTjvw.net]
>683は
「整数比とならない解の不存在性」は「整数比となる解の不存在性」と読み替えて下さい。
「整数比とならない」を「整数比となる解の不存在性」と書き換えようとして一部しか書き換えてませんでした。

要するに,日高氏は「(3)の解の集合は解の比に関して不可分な一体性をもつ」を持つ,と考えている。
どこかで,(3)の解の一部(部分集合)を取り上げて「整数比とならない」と結論を得れば,その結論が(3)の解全体(全体集合)に及ぶ。
解の比は定数倍しても不変なので,その結論はx^n+y^n=z^nの解の集合全体に及ぶ。
∴フェルマーの最終定理は証明された
と結論されることになる。

つまり,日高理論の不可欠の前提であり,絶対に譲れないポイントは「(3)の[(4)でも]解の集合は解の比に関して不可分な一体性をもつ」ことにある。

735 名前:日高 [2020/11/27(金) 07:08:35.75 ID:dGNpgNAA.net]
>688
・前段「(3)のyが無理数のとき、「x,y,zが整数比となるならば、」」は以下の式であらわされます。
(sw)^n + (tw)^n = ((sw) + n^{1/(n-1)})^n  ...式(イ)
(s, t は有理数、w は無理数)
・後段「(3)でyが有理数のときに整数比となる。」は以下の式であらわされます。(まだ式(ロ)は成り立っていない事に注意)
b^n + c^n = (b + n^{1/(n-1)})^n  ...式(ロ)
(b, c, (b + n^{1/(n-1)})もかな? は有理数で整数比)

式(ロ)と「有理数で整数比」が成り立つように、
b, c を s, t, w, (【証明】で使った記号など) であらわしてください。
それができればあなたの主張(a)は通ります。

「x,y,zが整数比となるならば、」としています。
実際には、x,y,zは、n>2のときは整数比となりません。n=2ならば、なります。

736 名前:132人目の素数さん mailto:sage [2020/11/27(金) 07:16:38.45 ID:YoZtTjvw.net]
>>699
>X+Y=(1+√2)とおくと,Yが有理数ならば,Xは無理数なのでX,Y,Zは整数比とならない。
>整数比となることがないことが示されたので,Yが無理数のときもX,Y,Zは整数比とならない。

>これは、正しいです。

いや,間違ってますよ。
あなたの論理を当てはめると,こんな間違いをしでかしますという例としてあげたつもりですが・・・・

はーーーー,日高さん,あなたは本当に「有理数解」と「整数比となる解」の区別が付かないんですね。
両者は一致する,という強烈な固定観念がある。

Y=X=(1+√2)/2 とおくと X:Y:Z=1:1:2 でしょう。
Yが無理数のときにはX,Y,Zは整数比となりえます。

これは,やはり,頭が硬いというレベルをちょっと超えてます・・・

737 名前:132人目の素数さん mailto:sage [2020/11/27(金) 07:21:30.00 ID:iCersrL7.net]
>>707
> >688
> ・前段「(3)のyが無理数のとき、「x,y,zが整数比となるならば、」」は以下の式であらわされます。
> (sw)^n + (tw)^n = ((sw) + n^{1/(n-1)})^n  ...式(イ)
> (s, t は有理数、w は無理数)
> ・後段「(3)でyが有理数のときに整数比となる。」は以下の式であらわされます。(まだ式(ロ)は成り立っていない事に注意)
> b^n + c^n = (b + n^{1/(n-1)})^n  ...式(ロ)
> (b, c, (b + n^{1/(n-1)})もかな? は有理数で整数比)
>
> 式(ロ)と「有理数で整数比」が成り立つように、
> b, c を s, t, w, (【証明】で使った記号など) であらわしてください。
> それができればあなたの主張(a)は通ります。

> 「x,y,zが整数比となるならば、」としています。
>

738 名前:タ際には、x,y,zは、n>2のときは整数比となりません。n=2ならば、なります。

そうやって日本語で説明されても曖昧で分かりません。
あなたの言う「x,y,zが」とは
>>688で言うと「(sw), (tw), ((sw) + n^{1/(n-1)})が」なので、
これを使って 式(ロ) の b, c をあらわしてください。
それができればあなたの主張(a)は通ります。
[]
[ここ壊れてます]

739 名前:日高 [2020/11/27(金) 08:15:30.23 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

740 名前:132人目の素数さん mailto:sage [2020/11/27(金) 08:21:52.83 ID:iCersrL7.net]
>>710
【証明】を
・proof B ★の補題を使う
から
・proof C シンプル
にスイッチしたようです。(参考:>>4-6

741 名前:日高 [2020/11/27(金) 08:26:25.11 ID:dGNpgNAA.net]
>689
条件を満たすあらわしかたがあるのでしょうか。

意味がよくわかりません。

742 名前:日高 [2020/11/27(金) 08:36:25.68 ID:dGNpgNAA.net]
>691
そのように断言できる証拠は?

実際に返事は、来ました。名前と内容は、この掲示板では、いいません。
拡散するので、相手に迷惑がかかるからです。

743 名前:日高 [2020/11/27(金) 08:41:49.50 ID:dGNpgNAA.net]
>692
フェルマー最終定理の n=3 の歴史について

現代の立場からみて 数学的に正しい証明が初めて世にでたのは

そうですね。



744 名前:日高 [2020/11/27(金) 08:47:51.39 ID:dGNpgNAA.net]
>703
まずはじめに(sw)^2+(tw)^2=(uw)^2が(3)につまりr=uw-sw=2になるように
s,t,u,w (s,t,uは有理数、wは無理数)を選んでみろ

r=uw-sw=2となる、u,s,wはありません。

745 名前:日高 [2020/11/27(金) 08:55:00.06 ID:dGNpgNAA.net]
>706
つまり,日高理論の不可欠の前提であり,絶対に譲れないポイントは「(3)の[(4)でも]解の集合は解の比に関して不可分な一体性をもつ」ことにある。

意味が、よく理解できません。

746 名前:日高 [2020/11/27(金) 09:00:26.14 ID:dGNpgNAA.net]
>708
Y=X=(1+√2)/2 とおくと X:Y:Z=1:1:2 でしょう。
Yが無理数のときにはX,Y,Zは整数比となりえます。

これは,やはり,頭が硬いというレベルをちょっと超えてます・・・

そうでした。考えが、及びませんでした。

747 名前:日高 [2020/11/27(金) 09:05:05.05 ID:dGNpgNAA.net]
>709
> 「x,y,zが整数比となるならば、」としています。
> 実際には、x,y,zは、n>2のときは整数比となりません。n=2ならば、なります。

そうやって日本語で説明されても曖昧で分かりません。
あなたの言う「x,y,zが」とは
>>688で言うと「(sw), (tw), ((sw) + n^{1/(n-1)})が」なので、
これを使って 式(ロ) の b, c をあらわしてください。
それができればあなたの主張(a)は通ります。

z=(sw) + n^{1/(n-1)}は、uwとなりません。

748 名前:日高 [2020/11/27(金) 09:06:38.47 ID:dGNpgNAA.net]
>711
【証明】を
・proof B ★の補題を使う
から
・proof C シンプル
にスイッチしたようです。

はい。

749 名前:日高 [2020/11/27(金) 09:07:57.38 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

750 名前:132人目の素数さん mailto:sage [2020/11/27(金) 10:01:46.06 ID:ekcxdcxd.net]
悪霊退散!!!

羯 多 呪 多 得 想 掛 所 亦 無 耳 不 是 異 蘊 観  摩
諦 呪 能 是 阿 究 礙 得 無 意 鼻 増 舎 色 皆 自  訶
菩 即 除 大 耨 竟 無 故 老 識 舌 不 利 色 空 在  般
菩 説 一 神 多 涅 掛 菩 死 界 身 減 子 即 度 菩  若
提 呪 切 呪 羅 槃 礙 提 盡 無 意 是 是 是 一 薩  波
娑 曰 苦 是 三 三 故 薩 無 無 無 故 諸 空 切 行  羅
婆 羯 真 大 藐 世 無 陀 苦 明 色 空 法 空 苦 深  蜜
訶 諦 実 明 三 諸 有 依 集 亦 聲 中 空 即 厄 般  多
般 羯 不 呪 菩 佛 恐 般 滅 無 香 無 相 是 舎 若  心
若 諦 虚 是 提 依 怖 若 道 無 味 色 不 色 利 波  経
心 波 故 無 故 般 遠 波 無 明 觸 無 生 受 子 羅
経 羅 説 上 知 若 離 羅 智 盡 法 受 不 想 色 蜜
□ 羯 般 呪 般 波 一 蜜 亦 乃 無 想 滅 行 不 多
□ 諦 若 是 若 羅 切 多 無 至 眼 行 不 識 異 時
□ 波 波 無 波 蜜 顛 故 得 無 界 識 垢 亦 空 照
□ 羅 羅 等 羅 多 倒 心 以 老 乃 無 不 復 空 見
□ 僧 蜜 等 蜜 故 夢 無 無 死 至 眼 浄 如 不 五

751 名前:日高 [2020/11/27(金) 10:18:53.39 ID:dGNpgNAA.net]
>721
悪霊退散!!!

どういう意味でしょうか?

752 名前:132人目の素数さん [2020/11/27(金) 11:19:34.53 ID:gHPBbJE/.net]
>>646
>方程式(3)の解(x,y,z)が無理数で整数比をなしていても、(3)の有理数解(x,y,z)は存在しません。
理由がわかりますか?

> よくわかりません。例をあげていただけないでしょうか。

理由を説明します。
方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。
後者の式により、x,zが同時に有理数になることはありません。

よってあなたの>>604の論理
(3)の解(x,y,z)が無理数で整数比となるならば、(3)の有理数解(x,y,z)が存在する
は間違っています。

753 名前:日高 [2020/11/27(金) 12:11:56.51 ID:dGNpgNAA.net]
>723
(3)の解(x,y,z)が無理数で整数比となるならば、(3)の有理数解(x,y,z)が存在する
は間違っています。

(sw)^3+(tw)^3=(uw)^3ならば、s^3+t^3=u^3となります。(s,t,uは有理数、wは無理数)



754 名前:132人目の素数さん [2020/11/27(金) 12:35:23.75 ID:gHPBbJE/.net]
>>724
> (sw)^3+(tw)^3=(uw)^3ならば、s^3+t^3=u^3となります。(s,t,uは有理数、wは無理数)

それはその通りです。
しかし、方程式x^n +y^n =z^nは方程式(3)ではありません。
>>723にも書いた通り方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。

ここまで理解いただけますか?

755 名前:132人目の素数さん mailto:sage [2020/11/27(金) 12:49:26.64 ID:ekcxdcxd.net]
悪霊退散!!!

弾正弼源顕定、魔羅を出して咲はるる語 第廿五
 今は昔、藤原の範国と云ふ人有りけり。五位の蔵人にて有りける時、小野の宮の実資の右の大臣と申す人、陣の御座に着て、上卿として事定め給ひけるに、彼の範国は五位の職事にて、申文を給はらむが為に、陣の御座に向ひて、上卿の仰せを承る間、弾正弼源の顕定と云ふ人、殿上人にて有りけるが、南殿の東の妻にして魔羅を掻き出しぬ。
 上卿は奥の方に御すれば、え見給はず。範国は陣の御座の南の上にて此れを見て、をかしきに堪へずして咲ひぬ。上卿、範国が咲ふを見て、案内を知らずして、「何かで、汝は公の宣を仰せ下す時には、此く咲ふぞ」と、大きに咎められて、即ち此の由を奏し給ひければ、範国、事苦しく成りて、恐ぢ怖けり。
 しかれども、範国、「此く顕定の朝臣の魔羅を出したりつれば」とはえ云出さでぞ止にける。顕定の朝臣は、「極めてをかし」とぞ思ひける。
 されば、人、折節

756 名前:知らぬ由無き戯れは為まじき事也となむ、語り伝へたるとや。 []
[ここ壊れてます]

757 名前:日高 [2020/11/27(金) 12:52:54.21 ID:dGNpgNAA.net]
>725
>>723にも書いた通り方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。

(sw)^3+(tw)^3=(uw)^3ならば、s^3+t^3=u^3となります。(s,t,uは有理数、wは無理数)
u=(s+√3)となりません。

758 名前:日高 [2020/11/27(金) 12:55:23.86 ID:dGNpgNAA.net]
>726
弾正弼源顕定、

どういう意味でしょうか?

759 名前:132人目の素数さん [2020/11/27(金) 13:01:33.72 ID:gHPBbJE/.net]
>>727
> (sw)^3+(tw)^3=(uw)^3ならば、s^3+t^3=u^3となります。(s,t,uは有理数、wは無理数)
u=(s+√3)となりません。

それはその通りです。

>>725の質問に答えてください。
方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。
このことをご理解、納得されていますか?

760 名前:日高 [2020/11/27(金) 13:25:40.41 ID:dGNpgNAA.net]
>729
方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。
このことをご理解、納得されていますか?

x^n +y^n=(x+ n^{1/(n-1)})^n
のx,yが有理数のとき、
z=x+ n^{1/(n-1)}は、有理数となりません。

761 名前:日高 [2020/11/27(金) 13:27:16.03 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

762 名前:132人目の素数さん [2020/11/27(金) 14:06:57.44 ID:RyAeridA.net]
>>730
> x^n +y^n=(x+ n^{1/(n-1)})^n
のx,yが有理数のとき、
z=x+ n^{1/(n-1)}は、有理数となりません。

ええ、その通りです。異論はありません。

3回目ですが伺います。
方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。
このことをご理解いただけましたか?
はい/いいえ でお答えください。

763 名前:日高 [2020/11/27(金) 14:35:00.12 ID:dGNpgNAA.net]
>732
方程式(3)は
x^n +y^n=z^n かつz-x= n^{1/(n-1)}
です。後者の式を忘れてはいけません。
このことをご理解いただけましたか?
はい/いいえ でお答えください。

「後者の式を忘れてはいけません。
このことをご理解いただけましたか?」
とは、どういう意味でしょうか?



764 名前:132人目の素数さん mailto:sage [2020/11/27(金) 14:43:33.11 ID:qKRYyEV/.net]
(3)と(4)は何をさしているのか ハッキリしていない
(3)は x^n+y^n=(x+n^{1/(n-1)})^n だけをさしているのか?
そうすると [(3)はn=2のとき、x,y,zは整数比となりえる] の意味が通らない
zは(3)が示す情報に入ってないからな
(4)についても同様のことがいえる
まずそれからハッキリさせてくれないか

765 名前:132人目の素数さん [2020/11/27(金) 14:55:50.91 ID:RyAeridA.net]
>>733
> どういう意味でしょうか?

方程式(3)は
「x^n +y^n=z^n 」ではなく
「x^n +y^n=z^n かつz-x= n^{1/(n-1)}」
である。という意味です。

このことをご理解いただけましたか?
はい/いいえ でお答えください。

766 名前:日高 [2020/11/27(金) 14:57:03.25 ID:dGNpgNAA.net]
>734
「zは(3)が示す情報に入ってないからな」

とは、どういう意味でしょうか?

767 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:01:42.21 ID:qKRYyEV/.net]
x^n+y^n=(x+n^{1/(n-1)})^n は
x,y,nだけの式なのだから
x,y,nについて何か言及したところで
zについてなにも影響がないだろ

意味がわかったのなら
(3)がどこどこまでを指しているのかハッキリさせた上で
お前の証明に反映させろ

768 名前:日高 [2020/11/27(金) 15:03:34.29 ID:dGNpgNAA.net]
>735
「x^n +y^n=z^n 」ではなく
「x^n +y^n=z^n かつz-x= n^{1/(n-1)}」
である。という意味です。

「x^n +y^n=z^n かつz-x= n^{1/(n-1)}」の
「かつ」の意味がわかりません。

769 名前:日高 [2020/11/27(金) 15:07:35.49 ID:dGNpgNAA.net]
>737
x^n+y^n=(x+n^{1/(n-1)})^n は
x,y,nだけの式なのだから
x,y,nについて何か言及したところで
zについてなにも影響がないだろ

「x,y,nについて何か言及したところで
zについてなにも影響がないだろ」
とは、どういう意味でしょうか?

770 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:13:24.76 ID:qKRYyEV/.net]
(3)は x^n+y^n=(x+n^{1/(n-1)})^n だけをさしているのか?

771 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:19:08.19 ID:qKRYyEV/.net]
       iイ彡 _=三三三f           ヽ
        !イ 彡彡´_ -_=={    二三三ニニニニヽ
       fイ 彡彡ィ 彡イ/    ィ_‐- 、   ̄ ̄ ヽ     し  ま
       f彡イ彡彡ィ/     f _ ̄ ヾユ  fヱ‐ォ     て  る
       f/ミヽ======<|-'いシ lr=〈fラ/ !フ    い  で
       イイレ、´彡f        ヽ 二 _rソ  弋_ { .リ    な  成
       fノ /) 彡!               ィ     ノ ̄l      .い   長
       トヾ__ら 'イf     u    /_ヽ,,テtt,仏  !     :
       |l|ヽ ー  '/          rfイf〃イ川トリ /      .:
       r!lト、{'ー‐    ヽ      ´    ヾミ、  /       :
      / \ゞ    ヽ   ヽ               ヽ /
      ./    \    \   ヽ          /
   /〈     \                 ノ
-‐ ´ ヽ ヽ       \\     \        人

772 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:24:01.97 ID:qKRYyEV/.net]
ちなみに私の指摘は >>732 の人の指摘につながるものだ
この疑問は以前なら お前はある程度答えられていたのだが
どうやら認知症が進行しているようだな
まるで成長していないどころか後退していってる

773 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:28:20.17 ID:ekcxdcxd.net]
悪霊退散!!!

◆蒼井そらの名言
 私は生きるために、カメラの前で服を脱いでいる。服をきちんと着ているあなたは、個人の欲望と人をだますためにカメラの前に立っている。



774 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:36:04.90 ID:qKRYyEV/.net]
知的後退を繰り返したその身体には 悪霊 がとりつきやすくなる
この迷惑野郎 >>1 は悪霊がとりついたものと解釈していいだろう
そんなものとかかわりたくないので 悪霊退散の呪文をはっていく []
[ここ壊れてます]

776 名前:日高 [2020/11/27(金) 15:37:43.28 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

777 名前:132人目の素数さん mailto:sage [2020/11/27(金) 15:40:09.82 ID:qKRYyEV/.net]
仏説摩訶般若波羅蜜多心経

観自在菩薩行深般若波羅蜜多時
照見五蘊皆空
度一切苦厄
舎利子
色不異空
空不異色
色即是空
空即是色
受・想・行・識亦復如是
舎利子
是諸法空相
不生不滅
不垢不浄
不増不減
是故空中
無色
無受・想・行・識
無眼・耳・鼻・舌・身・意
無色・声・香・味・触・法
無眼界
乃至
無意識界
無無明
亦無無明尽
乃至
無老死
亦無老死尽
無苦・集・滅・道
無智亦無得
以無所得故
菩提薩埵
依般若波羅蜜多故
心無罣礙
無罣礙故
無有恐怖
遠離一切顛倒夢想
究竟涅槃
三世諸仏
依般若波羅蜜多故
得阿耨多羅三藐三菩提
故知
般若波羅蜜多
是大神呪
是大明呪
是無上呪
是無等等呪
能除一切苦
真実不虚
故説
般若波羅蜜多呪
即説呪曰
羯諦羯諦波羅羯諦波羅僧羯諦菩提薩婆訶
般若心経s

778 名前:132人目の素数さん [2020/11/27(金) 16:19:47.30 ID:RyAeridA.net]
>>738
> 「かつ」の意味がわかりません。

「かつ」の用例を中学2年生レベルで以下に示します
x,yの連立方程式「x+2y=5 かつ3x-y=1」の解は
x=1,y=2である。

方程式(3)は
「x^n +y^n=z^n かつz-x= n^{1/(n-1)}」
である。
別の言い方にすると
方程式(3)を満たす(x,y,z)は
方程式x^n +y^n=z^n と方程式z-x= n^{1/(n-1)}の両方を満たす。という意味です。

「かつ」の意味も含めて
方程式(3)は
「x^n +y^n=z^n かつz-x= n^{1/(n-1)}」
である。
ということをご理解、納得いただけましたか?
はい/いいえ でお答えください。

779 名前:132人目の素数さん mailto:sage [2020/11/27(金) 16:38:57.85 ID:ekcxdcxd.net]
 悪霊退散!!!

>>738
> 「かつ」の意味がわかりません。

 トンカツの略である。

此の世のなごり夜もなごり
死にに行く身をたとふれば、あだしが原の道の霜
一足づつに消えていく、夢の夢こそあはれなり
あれ数ふれば暁の、七つの時が六つ鳴りて
残る一つが今生の、鐘の響きの聴きをさめ
寂滅為楽とひびくなり

780 名前:日高 [2020/11/27(金) 16:40:25.27 ID:dGNpgNAA.net]
>740
(3)は x^n+y^n=(x+n^{1/(n-1)})^n だけをさしているのか?

「だけをさしているのか?」の意味がわかりません。
(3)は x^n+y^n=(x+n^{1/(n-1)})^n です。

781 名前:日高 [2020/11/27(金) 16:41:43.97 ID:dGNpgNAA.net]
>741
 iイ彡 _=三三三f           ヽ
        !イ 彡彡´_ -_=={    二三三ニニニニヽ

どういう意味でしょうか?

782 名前:日高 [2020/11/27(金) 16:50:27.35 ID:dGNpgNAA.net]
>742
ちなみに私の指摘は >>732 の人の指摘につながるものだ

よく、意味がわかりません。

783 名前:132人目の素数さん mailto:sage [2020/11/27(金) 16:50:50.35 ID:ekcxdcxd.net]
悪霊退散!!!

 tan1°は有理数か。



784 名前:日高 [2020/11/27(金) 16:51:46.29 ID:dGNpgNAA.net]
>743
悪霊退散!!!

どういう意味でしょうか?

785 名前:日高 [2020/11/27(金) 16:54:32.74 ID:dGNpgNAA.net]
>744
知的後退を繰り返したその身体には 悪霊 がとりつきやすくなる

どういう意味でしょうか?

786 名前:日高 [2020/11/27(金) 16:55:34.63 ID:dGNpgNAA.net]
>745
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

787 名前:132人目の素数さん mailto:sage [2020/11/27(金) 16:56:13.27 ID:qKRYyEV/.net]
はい、ここで問題です
日高さんが今まで書いた同じ文は合計いくつでしょうか
あ、よくわからないのでしたね ^^;

おめぇー完全に掲示板荒らしだぞ
5chだからといってコピペ繰り返していいとおもってるのか?
まず おめぇの証明はメモ帳に貼り付けて それを逐次参照しろ
ここにいちいち全く同じものをコピペするなよ
不愉快なんだよ 不愉快 わかる? わからないよね
わかったらこんなバカなことを繰り返さないからね

788 名前:日高 [2020/11/27(金) 16:57:37.34 ID:dGNpgNAA.net]
>746
仏説摩訶般若波羅蜜多心経

どういう意味でしょうか?

789 名前:132人目の素数さん mailto:sage [2020/11/27(金) 16:58:40.21 ID:qKRYyEV/.net]
→ 日高
おめぇの存在はどういう意味でしょうか?

790 名前:日高 [2020/11/27(金) 16:58:55.70 ID:dGNpgNAA.net]
>748
 トンカツの略である。

どういう意味でしょうか?

791 名前:日高 [2020/11/27(金) 17:06:00.42 ID:dGNpgNAA.net]
>747
「x^n +y^n=z^n 」ではなく

の、「ではなく」とは、どういう意味でしょうか?

792 名前:日高 [2020/11/27(金) 17:07:50.32 ID:dGNpgNAA.net]
>756
はい、ここで問題です
日高さんが今まで書いた同じ文は合計いくつでしょうか

どういう、意図でしょうか>

793 名前:日高 [2020/11/27(金) 17:09:12.86 ID:dGNpgNAA.net]
>758
→ 日高
おめぇの存在はどういう意味でしょうか?

どういう意味でしょうか?



794 名前:132人目の素数さん mailto:sage [2020/11/27(金) 17:18:09.15 ID:5AhxDIEh.net]
もはやただのコピペマシンだな。

795 名前:132人目の素数さん mailto:sage [2020/11/27(金) 17:24:55.91 ID:qKRYyEV/.net]
>>762
[どういう意味でしょうか?] というのはどういう意味でしょうか?

796 名前:日高 [2020/11/27(金) 17:29:40.95 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

797 名前:日高 [2020/11/27(金) 17:31:17.68 ID:dGNpgNAA.net]
>764
[どういう意味でしょうか?] というのはどういう意味でしょうか?

どういう意味でしょうか?

798 名前:日高 [2020/11/27(金) 17:33:31.25 ID:dGNpgNAA.net]
>763
もはやただのコピペマシンだな。

どういう意味でしょうか?

799 名前:132人目の素数さん mailto:sage [2020/11/27(金) 17:33:39.54 ID:1uB++rFT.net]
>>693
> >674
> (3)のyが有理数のとき、x,y,zが整数比とならないので、
> (3)のyが無理数のときx,y,zが整数比となる可能性は、ありません
>
> > これは間違い
>
> 間違いでは、ありません。
> (sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^n。(s,t,uは有理数、wは無理数)
>>715
> >703
> まずはじめに(sw)^2+(tw)^2=(uw)^2が(3)につまりr=uw-sw=2になるように
> s,t,u,w (s,t,uは有理数、wは無理数)を選んでみろ
>
> r=uw-sw=2となる、u,s,wはありません。
だから
> (sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^n。(s,t,uは有理数、wは無理数)
は(3)の場合には
(sw)^n+(tw)^n=(uw)^nが(3)でないならばs^n+t^n=u^nが(3)となる (s,t,uは有理数,wは無理数)
s^n+t^n=u^nが(3)でないならば(sw)^n+(tw)^n=(uw)^nが(3)となる (s,t,uは有理数,wは無理数)
であって
解x,y,zが整数比になる(ならない)ことを証明するならば
n=2ならs^n+t^n=u^nが(3)となる(ならない)ことを証明する
nが奇素数なら(sw)^n+(tw)^n=(uw)^nが(3)となる(ならない)ことを証明する
必要がある

800 名前:日高 [2020/11/27(金) 17:39:39.67 ID:dGNpgNAA.net]
>768
> (sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^n。(s,t,uは有理数、wは無理数)
は(3)の場合には
(sw)^n+(tw)^n=(uw)^nが(3)でないならばs^n+t^n=u^nが(3)となる (s,t,uは有理数,wは無理数)
s^n+t^n=u^nが(3)でないならば(sw)^n+(tw)^n=(uw)^nが(3)となる (s,t,uは有理数,wは無理数)
であって
解x,y,zが整数比になる(ならない)ことを証明するならば
n=2ならs^n+t^n=u^nが(3)となる(ならない)ことを証明する
nが奇素数なら(sw)^n+(tw)^n=(uw)^nが(3)となる(ならない)ことを証明する
必要がある

よく、意味が理解できません。
例を、上げていただけないでしょうか。

801 名前:132人目の素数さん mailto:sage [2020/11/27(金) 18:02:34.77 ID:1uB++rFT.net]
>>769
整数比の解があったと仮定して
p=2の場合だと(3)のyが無理数であると仮定すると
> r=uw-sw=2となる、u,s,wはありません。
だから
r=u-s=2となるs,uを探すことになる (s,uは有理数,wは無理数)
ただしr=uw-sw=2となるs,u,wがないことは整数比の解を持たない理由にはならない

x^2+y^2=(x+2)^2つまり(3)でy=2√3とするとx=2,z=4で整数比でない
x^2+y^2=(x+√3)^2でy=2√3とするとx=(3/2)*√3,z=(5/2)*√3で整数比になるが
これはx^2+y^2=(x+2)^2つまり(3)でy=2*2とすることと同じ比の解である

p=3なら(3)のyが有理数であると仮定すると
r=u-s=√3となるs,uはないからr=uw-sw=√3となるs,u,wを探すことになる
ただしr=u-s=√3となるs,uがないことは整数比の解を持たない理由にはならない

x^p+y^p=z^pの解として
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (b,cは有理数)を考えれば
a=1とすればx^p+y^p=z^pがp=2でもpが奇素数でもどちらの場合も(3)の解になるので
p=2でもpが奇素数でもどちらの場合も整数比になりえる

802 名前:132人目の素数さん mailto:sage [2020/11/27(金) 18:06:50.42 ID:1uB++rFT.net]
>>770
(b,cは有理数)は(s,tは有理数)のこと

x^p+y^p=z^pの解として
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (s,tは有理数)を考えれば
a=1とすればx^p+y^p=z^pがp=2でもpが奇素数でもどちらの場合も(3)の解になるので
p=2でもpが奇素数でもどちらの場合も整数比になりえる

803 名前:日高 [2020/11/27(金) 18:29:34.10 ID:dGNpgNAA.net]
>770
x^p+y^p=z^pの解として
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (b,cは有理数)を考えれば
a=1とすればx^p+y^p=z^pがp=2でもpが奇素数でもどちらの場合も(3)の解になるので
p=2でもpが奇素数でもどちらの場合も整数比になりえる

p=3の場合、
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)}
は、解になりません。



804 名前:日高 [2020/11/27(金) 18:32:26.58 ID:dGNpgNAA.net]
>771
x^p+y^p=z^pの解として
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)} (s,tは有理数)を考えれば
a=1とすればx^p+y^p=z^pがp=2でもpが奇素数でもどちらの場合も(3)の解になるので
p=2でもpが奇素数でもどちらの場合も整数比になりえる

p=3の場合、
x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)}
は、解になりません。

805 名前:132人目の素数さん mailto:sage [2020/11/27(金) 18:55:57.44 ID:1uB++rFT.net]
>>772-773
> p=3の場合、
> x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)}
> は、解になりません
それはWilesの証明で示された定理に合わないというだけでおまえの証明では示されていない

p=2ならr=uw-sw=2となるs,u,wがないことは整数比の解を持たない理由にはならない
p=3ならr=u-s=√3となるs,uがないことは整数比の解を持たない理由にはならない
pが奇素数ならr=u-s=p^{1/(p-1)}となるs,uがないことは整数比の解を持たない理由にはならない

おまえが検討したのはa=1のときx^p+t^p=(x+p^{1/(p-1)})^p (tは有理数)であって
x^p+(t*p^{1/(p-1)})^p=(x+p^{1/(p-1)})^pではない

おまえが示したのはpが奇素数ならs^p+t^p=(s+p^{1/(p-1)})^p (s,tは有理数)は成り立たない
これはフェルマーの最終定理ではない

806 名前:132人目の素数さん mailto:sage [2020/11/27(金) 18:58:38.96 ID:ekcxdcxd.net]
悪霊退散!!!

 皇太子妃がレーガーに、スタインウェイではなくイバッハを弾く理由を尋ねた。いつものように本心を語る彼は
「妃殿下、それは謝礼が多いからですよ」
と大声で答えた。

807 名前:132人目の素数さん mailto:sage [2020/11/27(金) 19:06:39.06 ID:ekcxdcxd.net]
悪霊退散!!!

巻29第39話 蛇見女陰発欲出穴当刀死語 第卅九
(略)
 然る程に、男、急(き)と築垣の方を意はず見やりたるに、築垣の穴の有けるより、
大なる蛇の、頭を少し引入て、此の女を守て有ければ、「然は、此の蛇の、女の尿
しける前を見て、愛欲を発して蕩(とらかし)たれば、立たぬ也けり」と心得て、前
に指たりける一とひ1)の剣の様なるを抜て、其の蛇の有る穴の口に、奥の方に歯を
して、強く立てけり。
(略)
 然れば、此れを聞かむ女な、然様ならむ薮に向て、然様の事は為まじ。此れは、
見ける者共の語けるを聞継て、此く語り伝へたるとや。

808 名前:日高 [2020/11/27(金) 19:15:17.91 ID:dGNpgNAA.net]
>774
それはWilesの証明で示された定理に合わないというだけでおまえの証明では示されていない

違います。(4)になるからです。

809 名前:日高 [2020/11/27(金) 19:17:16.02 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

810 名前:132人目の素数さん mailto:sage [2020/11/27(金) 19:26:48.41 ID:1uB++rFT.net]
>>777
> 違います。(4)になるからです。

p=2だってx=3=(3/2)*2,y=4=(4/2)*2,z=5=(5/2)*2だから
2で割れば(4)になるだろ

811 名前:日高 [2020/11/27(金) 19:28:15.12 ID:dGNpgNAA.net]
>775
悪霊退散!!!

どういう意味でしょうか?

812 名前:日高 [2020/11/27(金) 19:29:28.35 ID:dGNpgNAA.net]
>776
悪霊退散!!!

どういう意味でしょうか?

813 名前:日高 [2020/11/27(金) 19:33:13.76 ID:dGNpgNAA.net]
>779
p=2だってx=3=(3/2)*2,y=4=(4/2)*2,z=5=(5/2)*2だから
2で割れば(4)になるだろ

そうですね。



814 名前:132人目の素数さん mailto:sage [2020/11/27(金) 19:42:20.07 ID:W5XuX+oh.net]
>>738 日高
> 「かつ」の意味がわかりません。

>>760 日高
> の、「ではなく」とは、どういう意味でしょうか?

「かつ」と「でない」がわからないということは「または」や「ならば」もわかっていないのでは。

815 名前:132人目の素数さん mailto:sage [2020/11/27(金) 19:43:58.65 ID:W5XuX+oh.net]
>>778 日高さんにならって。

(修正10)
【定理】n=3のとき、x^n+8y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+8y^n=z^nを、z=x+rとおいてx^n+8y^n=(x+r)^n…(1)とする。

(2)はa=1、r^(n-1)=nのとき、x^n+8y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+8y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n=3のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n=3のとき、x^n+8y^n=z^nのx,y,zは自然数とならない。

日高さん、この証明は正しいでしょうか。

816 名前:日高 [2020/11/27(金) 19:55:40.61 ID:dGNpgNAA.net]
>783
「かつ」と「でない」がわからないということは「または」や「ならば」もわかっていないのでは。

わかるか、もしくは、わからないかも、しれません。

817 名前:日高 [2020/11/27(金) 19:57:06.95 ID:dGNpgNAA.net]
>784
∴n=3のとき、x^n+8y^n=z^nのx,y,zは自然数とならない。

日高さん、この証明は正しいでしょうか。

式が違います。

818 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:01:18.86 ID:1uB++rFT.net]
>>782
> p=3の場合、
> x=s*(ap)^{1/(p-1)},y=t*(ap)^{1/(p-1)},z=(s+1)*(ap)^{1/(p-1)}
> は、解になりません。
>
> それはWilesの証明で示された定理に合わないというだけでおまえの証明では示されていない
>
> 違います。(4)になるからです。

> >779
> p=2だってx=3=(3/2)*2,y=4=(4/2)*2,z=5=(5/2)*2だから
> 2で割れば(4)になるだろ
>
> そうですね。

おまえの証明では(4)になることが解にならない理由だったら
p=2も整数比になる解を持たないことになるだろ
それはおまえの証明で示されることがWilesの証明で示された定理に合わないというだけ
x^2+y^2=z^2=(x+r)^2…(1)のx:y:z=3:4:5になる解はx=(3/2)*r,y=2*r,z=(5/2)*rであり
x=3/2,y=2,z=5/2は(3)の解ではなくて(4)の解なんだよ

819 名前:日高 [2020/11/27(金) 20:09:17.32 ID:dGNpgNAA.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

820 名前:日高 [2020/11/27(金) 20:16:27.09 ID:dGNpgNAA.net]
>787
おまえの証明では(4)になることが解にならない理由だったら
p=2も整数比になる解を持たないことになるだろ
それはおまえの証明で示されることがWilesの証明で示された定理に合わないというだけ
x^2+y^2=z^2=(x+r)^2…(1)のx:y:z=3:4:5になる解はx=(3/2)*r,y=2*r,z=(5/2)*rであり
x=3/2,y=2,z=5/2は(3)の解ではなくて(4)の解なんだよ

(3)の解と、(4)の解の比は、同じです。

x^2+y^2=z^2=(x+r)^2…(1)のx:y:z=3:4:5になる解はx=(3/2)*r,y=2*r,z=(5/2)*rであり
x=3/2,y=2,z=5/2は(3)の解ではなくて(4)の解なんだよ

その通りです。

821 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:16:56.83 ID:ekcxdcxd.net]
悪霊退散!!!

 又読経念仏等のつとめにうるところの功徳を、なんぢしるやいなや。
 ただしたをうごかし、こゑをあぐるを、仏事功徳とおもへる、いとはかなし。
仏法に擬するに、うたたとほく、いよいよはるかなり。又経書をひらくことは、
ほとけ、頓漸(とんぜん)修行の儀則を、をしへおけるを、あきらめしり、教の
ごとく修行すればかならず証をとらしめんとなり。いたづらに思量念度をつひや
して、菩提をうる功徳に擬せんとにはあらぬなり。おろかに千万誦の口業をしき
りにして、仏道にいたらんとするは、なほこれながえをきたにして、越にむかは
んとおもはんがごとし。又円孔に方木をいれんとせんとおなじ、文をみながら修
するみちにくらき、それ医方をみる人の合薬をわすれん、なにの益かあらん、口
声をひまなくせる。春の田のかへるの、昼夜になくがごとし、つひに又益なし。」

822 名前:日高 [2020/11/27(金) 20:21:01.87 ID:dGNpgNAA.net]
>790
悪霊退散!!!

どういう意味でしょうか?

823 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:21:07.63 ID:1uB++rFT.net]
>>789
> (3)の解と、(4)の解の比は、同じです。
それがx,y,zは整数比とならない根拠だったらn=2のときx,y,zは整数比とならないだろ



824 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:23:07.57 ID:ekcxdcxd.net]
悪霊退散!!!

仁に過ぐれば惰弱になり
義に過ぐれば頑迷になり
礼に過ぐれば追従になり
勇に過ぐれば暴虐になり
智に過ぐれば狡獪になる

825 名前:日高 [2020/11/27(金) 20:23:33.87 ID:dGNpgNAA.net]
>792
> (3)の解と、(4)の解の比は、同じです。
それがx,y,zは整数比とならない根拠だったらn=2のときx,y,zは整数比とならないだろ

n=2の場合は、(3)の解は整数比となります。

826 名前:日高 [2020/11/27(金) 20:25:11.29 ID:dGNpgNAA.net]
>793
悪霊退散!!!

どういう意味でしょうか?

827 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:27:01.04 ID:1uB++rFT.net]
>>794
> n=2の場合は、(3)の解は整数比となります。
それは
> (3)の解と、(4)の解の比は、同じです。
とは無関係な別の方法で証明できるからだろ
だからたとえばn=3の場合も
> (3)の解と、(4)の解の比は、同じです。
とは無関係な別の方法で証明しなければならないが
おまえは証明していないだろ

828 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:28:34.36 ID:W5XuX+oh.net]
>>786 日高
> >784
> ∴n=3のとき、x^n+8y^n=z^nのx,y,zは自然数とならない。
>
> 日高さん、この証明は正しいでしょうか。
>
> 式が違います。

式が同じか違うかを質問したのではありません。
この証明は正しいでしょうか? とお尋ねしています。
考えを述べてください。

(あなたはほかの人に自分の証明が正しいかどうか質問し

829 名前:トいます。
同じことをあなたに尋ねるものです。)
[]
[ここ壊れてます]

830 名前:132人目の素数さん mailto:sage [2020/11/27(金) 20:49:55.34 ID:YoZtTjvw.net]
>>716
>(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
>(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。

上の【証明】の記述から判断できることとして,あなたは(3)に有理数解がないことから

 [a] (3)に整数比となる解がないことが確定する
   同時に(解の比は同じだから)
 [b] (4)にも整数比となる解が存在しないことが確定する。

以上の[a][b]を直接に[他の論証を必要とせずに](3)から帰結できると考えているという意味です。

つまり,(3)に「有理数解がない」ことから(3)には「整数比となる解がない」ことが確定し,同時にx^n+y^n=z^nという一般式に「整数比の解がない」ことも必然的に帰結される。
(3)のyが有理数である場合での結論が,x^n*y^n=z^n の解全部についての結論となる。
両者は異なることはない。

「解の比に関して不可分な一体性」といったのは以上の意味ですが,そう理解されているんですよね?
(修正10)ではyが有理数の場合・・・という中間過程も吹っ飛ばして,直接にx,y,zは整数比とならない,となっていますが,それは上の[a][b]から導かれるんですよね?

831 名前:132人目の素数さん mailto:sage [2020/11/27(金) 21:00:45.84 ID:YoZtTjvw.net]
>798の x^n*y^n=z^n は x^n+y^n=z^n の誤りです。

【証明】(修正10)が「yが有理数の場合・・・」という論証の中間過程を省いたので証明の趣旨は逆にわかりやすくなりました。

x^n+y^n=(x+n^{1/(n-1)})^n…(3)

(3)が有理数解を持たないことから,(3)の解x,y,zは整数比とならないという結論が直接導ける。
上の結論が導けることはわざわざ証明の過程を明示するまでもなく一目瞭然である。

そのように理解されているんですよね。

832 名前:132人目の素数さん mailto:sage [2020/11/28(土) 00:02:56.56 ID:wtlDa0yP.net]
a^3=√(b^6+c^6+d^6+2*√(b^3*c^3+b^3*d^3+c^3*d^3))を満たす
整数a,b,c,d,の組み合わせは存在しない

a^3=√(b^6+c^6+d^6+e^6+2*√(b^3*c^3+b^3*d^3+c^3*d^3+a^6*e^6+b^6*e^6+c^6*e^6+d^6*e^6))を満たす
整数a,b,c,d,eの組み合わせは存在しない

833 名前:132人目の素数さん [2020/11/28(土) 01:14:02.02 ID:buCr9xZQ.net]
>>760
> 「x^n +y^n=z^n 」ではなく
> の、「ではなく」とは、どういう意味でしょうか?

x,y,zに関する方程式(3)の満たすべき条件は
「x^n +y^n=z^n」だけではない。
という意味です。

x,y,zに関する方程式(3)の満たすべき条件は
「x^n +y^n=z^n」と「z-x= n^{1/(n-1)}」
の両方である。
ということをご理解、納得いただけましたか?
はい/いいえ でお答えください。



834 名前:132人目の素数さん mailto:sage [2020/11/28(土) 03:51:12.12 ID:80U/4l9f.net]
>>760
> >747
> 「x^n +y^n=z^n 」ではなく
> の、「ではなく」とは、どういう意味でしょうか?
これはないわー
逃げ切る気満々じゃん。

835 名前:132人目の素数さん [2020/11/28(土) 05:28:57.61 ID:YJ1GAhwH.net]
また日高のフニャフニャ回避が始まったわw

836 名前:132人目の素数さん [2020/11/28(土) 05:32:19.64 ID:YJ1GAhwH.net]
自分の論理が破綻してしまうような質問には、明言を避けまくるw

837 名前:132人目の素数さん [2020/11/28(土) 05:40:41.50 ID:YJ1GAhwH.net]
そういう事から日高は己の論理の穴をちゃんと認識しているという事だな。
それなのに正しいとゴリ押ししてるのだから悪質極まりない。

838 名前:日高 [2020/11/28(土) 06:26:14.07 ID:0fpuH75L.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

839 名前:日高 [2020/11/28(土) 06:31:44.82 ID:0fpuH75L.net]
>796
> n=2の場合は、(3)の解は整数比となります。
それは
> (3)の解と、(4)の解の比は、同じです。
とは無関係な別の方法で証明できるからだろ
だからたとえばn=3の場合も
> (3)の解と、(4)の解の比は、同じです。
とは無関係な別の方法で証明しなければならないが
おまえは証明していないだろ

どうして別の方法で証明しなければならないのでしょうか?

840 名前:日高 [2020/11/28(土) 06:35:54.42 ID:0fpuH75L.net]
>797
式が同じか違うかを質問したのではありません。
この証明は正しいでしょうか? とお尋ねしています。
考えを述べてください。

式が違うので、自然数解を持ちます。

841 名前:日高 [2020/11/28(土) 06:46:56.30 ID:0fpuH75L.net]
>797
式が同じか違うかを質問したのではありません。
この証明は正しいでしょうか? とお尋ねしています。
考えを述べてください。

式が違うので、わかりません。

842 名前:日高 [2020/11/28(土) 06:56:12.09 ID:0fpuH75L.net]
>798
「解の比に関して不可分な一体性」といったのは以上の意味ですが,そう理解されているんですよね?
(修正10)ではyが有理数の場合・・・という中間過程も吹っ飛ばして,直接にx,y,zは整数比とならない,となっていますが,それは上の[a][b]から導かれるんですよね?

(3)の、「x,y,zは整数比とならない」は、
(sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^nとなる。(s,t,uは有理数、wは無理数)
からです。

843 名前:132人目の素数さん [2020/11/28(土) 07:19:19.57 ID:ymvak4/C.net]
日高さんが大学教授から返信してもらった内容教えてよ。
教授の名前とか言わなくていいからさ。

まー、もし日高さんの証明もどきが正しく教授に認められていたら、今頃その大学教授と連名で論文出して、ここでこんな事してないだろうけどな。

たぶん社交辞令的な残念メールの文言を日高脳内論理で変換して賞賛されたと思い込んでいる可能性大w



844 名前:132人目の素数さん mailto:sage [2020/11/28(土) 07:23:31.39 ID:g5JRJwZK.net]
>>806
> (修正10)
> 【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
nが自然数

845 名前:ナなければ明確に反例が知られている。なので、これは真っ赤な嘘。
そんなことも理解できず、正確な主張すら書けない日高の書いたものは、
全てが誤魔化し。証明とは呼べない。

証明とは、正確な記述と正しい論理に基づく正確な推論の積み重ねでなければならない。

根拠を聞かれても、どのような推論をしたのかを細かく分解して説明出来ないものは証明ではない。

自分が今まで嘘をつき通してきたことが理解できるまで勉強しろ。理解できなければ返信するな。ゴミ。
[]
[ここ壊れてます]

846 名前:132人目の素数さん mailto:sage [2020/11/28(土) 07:38:16.83 ID:7mUeoanL.net]
>>807
> どうして別の方法で証明しなければならないのでしょうか?
整数比でも整数比でなくても(3)の解とその解をa^{1/(p-1)}倍した
(4)の解の比は同じだろ

p=2のとき
x^2+y^2=(x+2)^2…(3)
y^2=4x+4
2^2*(y/2)^2=(2^2)*(2(x/2)+1)
(y/2)^2=2(x/2)+1

x^2+y^2=(x+√3)^2…(4)
y^2=2√3x+3
√3^2*(y/√3)^2=(√3^2)*(2(x/√3)+1)
(y/√3)^2=2(x/√3)+1

x^2+y^2=(x+1)^2…(4)
y^2=2x+1

(3)と(4)の解の比が同じになることは
(y/2)^2=2(x/2)+1はY^2=2X+1にX=x/2,Y=y/2を代入したもの
(y/√3)^2=2(x/√3)+1はY^2=2X+1にX=x/√3,Y=y/√3を代入したもの
y^2=2x+1はY^2=2X+1にX=x,Y=yを代入したもの
と同じ式Y^2=2X+1で表せることであって
整数比になることはY^2=2X+1のX,Yがともに有理数にできることだから
別に証明しなければならない

s,tは有理数として
x^2+y^2=(x+2)^2…(3)でx=2s,y=2tならt^2=2s+1となって整数比になる
x^2+y^2=(x+1)^2…(4)でx=s,y=tならt^2=2s+1となって整数比になる
この2つはyを有理数としてxが有理数になるかを調べれば良いが
x^2+y^2=(x+√3)^2…(4)でx=s*√3,y=t*√3ならt^2=2s+1となって整数比になる
の場合はyを有理数にしたらt^2=2s+1とはならない(整数比にならない)
よってy=t*√3としてx=s*√3になるかどうかを調べなければならない

p=3のとき
t^2=2s+1ではないが考え方は同じで
x^3+y^3=(x+2)^2…(4)でx=2s,y=2tとできるか?
x^3+y^3=(x+1)^3…(4)でx=s,y=tとできるか?
この2つはyを有理数としてxが有理数になるかを調べれば良いが
x^3+y^3=(x+√3)^3…(3)でx=s*√3,y=t*√3とできるか?
の場合はy=t*√3としてx=s*√3になるかどうかを調べなければならない

847 名前:132人目の素数さん mailto:sage [2020/11/28(土) 07:46:39.29 ID:LpYp+oBb.net]
悪霊退散!!!

君が行く海辺の宿に霧立たば我が立ち嘆く息と知りませ

848 名前:日高 [2020/11/28(土) 08:46:12.52 ID:0fpuH75L.net]
>811
日高さんが大学教授から返信してもらった内容教えてよ。
教授の名前とか言わなくていいからさ。

大学と教授の頭文字を書けば、すぐわかる人です。
内容は、整数比となることと、有理数解をもつことは、違うということでした。
理由は、教えてもらえませんでした。

なので、この部分以外は、正しいということになります。
私は、「整数比となることと、有理数解をもつこと」は、同じだと思います。

849 名前:132人目の素数さん mailto:sage [2020/11/28(土) 08:51:45.33 ID:LpYp+oBb.net]
悪霊退散!!!

大阪府 70代女性 祖母と母の介護を経験
 以前、下半身が麻痺した母と、急激にぼけてしまった祖母とを介護しました。祖母は徘徊し、知らないお宅に上がり込んだり、工場の隅で寝ていたり、
裸で外に出て車を止めたりし、「ごはんを食べていない」と言ってご近所に行ったりしました。昼夜逆転した祖母のために睡眠はとれず、結婚した兄が
一人いましたが、離れたところに住んでいたために誰も助けてくれませんでした。私は自分で何かしようという勇気はありませんでしたが、家族を殺め
てしまうという精神状態は少し理解できます。ある時、祖母を抱っこして夕涼みに出ていたら、知らない人が車を停めて近づいてこられ、
  「あなた、幸せになりますよ」
と言われました。白い服を着た中年の男性でした。誰もわかってくれないと思っていた私に、一言声をかけてくださったその方のことが、心の中にずっと
あります。施設を充実させたり、ヘルパーさんを増やしたりすることも必要だと思いますが、周囲の人たちの気持ちも大事だと思います。話を聞いてくれ
る人がいたら、辛い事件は少し減るのではと思います。

850 名前:132人目の素数さん mailto:sage [2020/11/28(土) 08:53:00.60 ID:IDrQM9k5.net]
>>815
大学教授の言うことは間違いで、自分が正しいと思ってるんですね。
なんの根拠もなく。

851 名前:日高 [2020/11/28(土) 08:55:19.26 ID:0fpuH75L.net]
>799
x^n+y^n=(x+n^{1/(n-1)})^n…(3)

(3)が有理数解を持たないことから,(3)の解x,y,zは整数比とならないという結論が直接導ける。
上の結論が導けることはわざわざ証明の過程を明示するまでもなく一目瞭然である。

そのように理解されているんですよね。

はい。その通りです。

852 名前:132人目の素数さん mailto:sage [2020/11/28(土) 08:58:04.23 ID:LpYp+oBb.net]
悪霊退散!!!

procedure Sosu(var intArr :array of Integer);
var
sosuflag:array[word]of boolean; //素数かどうかを判定するフラグ
i,j :Integer;
begin
fillchar(sosuflag,SizeOf(Sosuflag),1);
  //まずすべての数を素数と見なしてから後で、割り切れるものをはじく。
i := 2; //素数の最小値
repeat
j := i ; inc(j,i);
while j <= $FFFF do begin
sosuflag[j] := false; //iの倍数なので素数ではない
Inc(J,I);
end;
repeat
Inc(i);
until sosuflag[i]; //次に小さい素数を探す
until i > $8FFF;
j := 1;
for i := 0 to High(IntArr) do begin
repeat
inc(j);
if j > $FFFF then
raise Exception.Create('大きすぎて素数が求められません');
until sosuflag[j];
IntArr[i] := J;
end;
end;

853 名前:132人目の素数さん mailto:sage [2020/11/28(土) 08:59:49.93 ID:LpYp+oBb.net]
悪霊退散!!!


  「フェルマーの定理 日高 迷惑 メール」 でググる。



854 名前:日高 [2020/11/28(土) 09:01:26.28 ID:0fpuH75L.net]
>800
a^3=√(b^6+c^6+d^6+2*√(b^3*c^3+b^3*d^3+c^3*d^3))を満たす
整数a,b,c,d,の組み合わせは存在しない

わかりません。

855 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:04:00.71 ID:LpYp+oBb.net]
悪霊退散!!!

LET n = 100
DIM s(n)
MAT s = ZER ! 配列 s の全要素に 0(zero) を代入 ※s = 0 ではダメ
LET k = 0
FOR i = 2 TO n
  IF s(i) = 0 THEN
   PRINT USING "####":i;
   LET k = k + 1
   IF MOD(k,10) = 0 THEN
     PRINT
   END IF
   FOR j = i^2 TO N STEP i
     LET s(j) = 1
   NEXT j
  END IF
NEXT i

856 名前:日高 [2020/11/28(土) 09:04:47.02 ID:0fpuH75L.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

857 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:10:01.88 ID:LpYp+oBb.net]
悪霊退散!!!

REM 既約なピタゴラス数
FUNCTION gcd(a,b)
  DO WHILE b <> 0
   LET r = MOD(a,b)
   LET a = b
   LET b = r
  LOOP
  LET gcd = a
END FUNCTION

LET LAST = 200

REM ピタゴラス数を求める
FOR x = 1 TO LAST
  FOR y = x + 1 TO LAST
   LET z = SQR(x^2+y^2)
   IF INT(z) = z THEN
     IF gcd(x,y) = 1 AND gcd(x,z) = 1 AND gcd(y,z) = 1 THEN
      PRINT USING "##### ##### #####": x,y,z
     END IF
   END IF
  NEXT y
NEXT x

END

858 名前:日高 [2020/11/28(土) 09:11:49.19 ID:0fpuH75L.net]
>801
x,y,zに関する方程式(3)の満たすべき条件は
「x^n +y^n=z^n」だけではない。
という意味です。

「(3)の満たすべき条件」とは、どういう意味でしょうか?

859 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:13:34.90 ID:LpYp+oBb.net]
悪霊退散!!!
//2階線形微分方程式( second order differential equation )
procedure TForm1.SLDifEq;
var
 i:       Integer;
 Ex, Ey, h:   Extended;
 Ev, Et:     Extended;
 k1, k2, k3, k4: Extended;
 m1, m2, m3, m4: Extended;

function DFunc1(t, x, v: Extended):Extended;
begin
 Result := CalcEG(EdFuncV.Text, 'v', v);
end;

function DFunc2(t, x, v: Extended):Extended;
begin
 Result := CalcEG(EdFuncDV.Text, 'v', v) + CalcEG(EdFuncX.Text, 'x', x)
                     + CalcEG(EdFuncT.Text, 't', t);
end;

860 名前:日高 [2020/11/28(土) 09:16:02.64 ID:0fpuH75L.net]
>802
> 「x^n +y^n=z^n 」ではなく
> の、「ではなく」とは、どういう意味でしょうか?
これはないわー
逃げ切る気満々じゃん。

違います。逃げ切るつもりは、ありません。

861 名前:日高 [2020/11/28(土) 09:20:11.27 ID:0fpuH75L.net]
>803
また日高のフニャフニャ回避が始まったわw

どの部分が、フニャフニャ回避でしょうか?

862 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:21:50.04 ID:LpYp+oBb.net]
悪霊退散!!!
begin
 with PaintScree

863 名前:n1 do
 begin
  OffBmp.Canvas.Pen.Width := SubWidth;
  OffBmp.Canvas.Pen.Color := TColor($971D4F);

  //初期値
  h := StrToFloat(Edh.Text);
  Et := StrToFloat(Edt0.Text);
  Ev := StrToFloat(Edv0.Text);
  Ex := StrToFloat(Edx0.Text);
  OffBmp.Canvas.MoveTo( RealToDispX(Et),RealToDispY(Ex) );
  for i := 0 to 100 do
  begin
[]
[ここ壊れてます]



864 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:22:24.03 ID:LpYp+oBb.net]
悪霊退散!!!
   //ルンゲ・クッタ
   k1 := h*DFunc1(Et, Ex, Ev);
   m1 := h*DFunc2(Et, Ex, Ev);

   k2 := h*DFunc1(Et+0.5*h, Ex+0.5*k1, Ev+0.5*m1);
   m2 := h*DFunc2(Et+0.5*h, Ex+0.5*k1, Ev+0.5*m1);

   k3 := h*DFunc1(Et+0.5*h, Ex+0.5*k2, Ev+0.5*m2);
   m3 := h*DFunc2(Et+0.5*h, Ex+0.5*k2, Ev+0.5*m2);

   k4 := h*DFunc1(Et+h, Ex+k3, Ev+m3);
   m4 := h*DFunc2(Et+h, Ex+k3, Ev+m3);

   Et := Et + h;
   Ex := Ex + (k1 + 2*k2 + 2*k3 + k4)/6;
   Ev := Ev + (m1 + 2*m2 + 2*m3 + m4)/6;

   OffBmp.Canvas.LineTo( RealToDispX(Et),RealToDispY(Ex) );
  end;

865 名前:日高 [2020/11/28(土) 09:22:54.98 ID:0fpuH75L.net]
>804
自分の論理が破綻してしまうような質問には、明言を避けまくるw

どの部分が、自分の論理が破綻してしまうような質問でしょうか?

866 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:23:01.09 ID:LpYp+oBb.net]
悪霊退散!!!
  //初期値
  h := StrToFloat(Edh.Text);
  Et := StrToFloat(Edt0.Text);
  Ev := StrToFloat(Edv0.Text);
  Ex := StrToFloat(Edx0.Text);
  OffBmp.Canvas.MoveTo( RealToDispX(Et),RealToDispY(Ex) );
  for i := 0 to 100 do //負方向の計算
  begin
   k1 := -h*DFunc1(Et, Ex, Ev);
   m1 := -h*DFunc2(Et, Ex, Ev);

   k2 := -h*DFunc1(Et+0.5*h, Ex+0.5*k1, Ev+0.5*m1);
   m2 := -h*DFunc2(Et+0.5*h, Ex+0.5*k1, Ev+0.5*m1);
   k3 := -h*DFunc1(Et+0.5*h, Ex+0.5*k2, Ev+0.5*m2);
   m3 := -h*DFunc2(Et+0.5*h, Ex+0.5*k2, Ev+0.5*m2);

   k4 := -h*DFunc1(Et+h, Ex+k3, Ev+m3);
   m4 := -h*DFunc2(Et+h, Ex+k3, Ev+m3);
   Et := Et - h;
   Ex := Ex + (k1 + 2*k2 + 2*k3 + k4)/6;
   Ev := Ev + (m1 + 2*m2 + 2*m3 + m4)/6;

   //横軸変位t 縦軸速度 x
   OffBmp.Canvas.LineTo( RealToDispX(Et),RealToDispY(Ex) );
  end;
 end;
end;

867 名前:日高 [2020/11/28(土) 09:25:15.87 ID:0fpuH75L.net]
>805
そういう事から日高は己の論理の穴をちゃんと認識しているという事だな。

どの部分が、己の論理の穴をちゃんと認識していることに、なるのでしょうか?

868 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:26:25.49 ID:LpYp+oBb.net]
悪霊退散!!!
procedure fft;
var K,L,KD : Integer ;
  wc,ws : Array of Extended ;
    procedure fftint ;
    var s : Integer ;
      wk : Extended ;
    begin
      For s := 0 to KD-1 do
      begin
       wk := 2.0 * Pi * s / K ;
       wc[s] := Cos(wk) ;
       ws[s] := -Sin(wk) ;
      end ;
    end ;
    function bitrev(ip : Integer) : Integer ;
    var i,w : Integer ;
    begin
      w := 0 ;
      For I := 1 to L do
      begin
       w := w * 2 + (ip mod 2) ;
       ip := ip div 2 ;
      end ;
      Result := w ;
    end ;
    procedure cfft(inv : Integer) ;
    var i,j,Li,sn,i0,i1,expon,iw : Integer ;
      wk,yr,yi,sign,wwc,wws : Extended ;

869 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:27:01.68 ID:LpYp+oBb.net]
悪霊退散!!!
    begin
      if inv = 1 then sign := 1.0 else sign := -1.0 ;
      Li := K ;
      iw := 1 ;
      For I := 1 to L do
      begin
       iw := iw * 2 ;
       Li := Li div 2 ;
       sn := 0 ;
       while sn < K-1 do
       begin
         For J := 0 to Li-1 do
         begin
          expon := (bitrev(sn) mod iw) * Li ;
          wws := sign * ws[expon] ;
          wwc := wc[expon] ;
          i0 := sn ;
          i1 := i0 + Li ;
          yr := xr[i1] * wwc - xi[i1] * wws ;
          yi := xr[i1] * wws + xi[i1] * wwc ;
          xr[i1] := xr[i0] - yr ;
          xi[i1] := xi[i0] - yi ;
          xr[i0] := xr[i0] + yr ;
          xi[i0] := xi[i0] + yi ;
          Inc(sn) ;
         end ;
         Inc(sn,Li) ;
       end ;
      end ;

870 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:27:27.58 ID:LpYp+oBb.net]
悪霊退散!!!
      For i := 0 to K-1 do
      begin
       j := bitrev(i) ;
       if inv = 1 then
       begin
         cr[j] := xr[i] / K ;
         ci[j] := xi[i] / K ;
       end else
       begin
         cr[j] := xr[i] ;
         ci[j] := xi[i] ;
       end ;
      end ;
    end ;
var
 s : Integer ;
begin
  //分割数を得る
  K := 1024 ; //2^nの形
  L := Trunc(log2(K)) ;
  KD := K div 2 ;
  //データはxr,xiで渡される。
  SetLength(wc,KD) ;
  SetLength(ws,KD) ;
  //手続き呼び出し
  fftint ;
  //以下で逆高速フーリエ変換ならば引数を-1にすれば大丈夫
  cfft(1) ;
end;

871 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:29:56.61 ID:LpYp+oBb.net]
悪霊退散!!!
//ガウス・ジョルダン〜Pivot選択あり:逆行列ルーティン付き
function GaussJordanPv(N: Integer):Integer;
var
  pRow,pv, k, j: Integer;
  mMax,R_pivot, temp: Extended;
begin
 //単位行列の設定
 for k := 1 to N do
  for j := 1 to N do
   if k = j then RA[k][j] := 1.0
   else     RA[k][j] := 0.0;
 for pv := 1 to N do //行ループ
 begin
  mMax := 0.000001;
  for k := pv to N do //行ループ 最大値探索
  begin
   if Abs(A[k][pv]) > mMax then
   begin
    mMax := Abs(A[k][pv]);
    pRow := k;
   end;
  end;
  if mMax <= 0.000001 then //誤差対策
  begin
   MessageDlg('解が存在しないかまたは不定です!', mtwarning, [mbok], 0);
   Result := 0;
   Exit;
  end;

872 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:30:39.38 ID:LpYp+oBb.net]
悪霊退散!!!
  //行の入れ替え
  if pv <> pRow then
  begin
   for k := 1 to N+1 do //列ループ
   begin
    temp := A[pv][k];
    A[pv][k] := A[pRow][k];
    A[pRow][k] := temp;
   end;
   for k := 1 to N do //列ループ 単位行列
   begin
    temp := RA[pv][k];
    RA[pv][k] := RA[pRow][k];
    RA[pRow][k] := temp;
   end;
  end;

  //ピボット行の処理   ⇒ 対角成分 = 1
  R_pivot := 1.0/A[pv][pv];//ピボットの逆数
  for j := 1 to N+1 do //列ループ
   A[pv][j] := A[pv][j]*R_pivot;
  for j := 1 to N do  //列ループ 単位行列
   RA[pv][j] := RA[pv][j]*R_pivot;
  //ピボット行以外の処理 ⇒ ピボット列 = 0
  for k := 1 to N do
  begin
   temp := A[k][pv];    //消去する係数
   begin
    for j := pv to N+1 do //ピボット列以降を処理
     if k <> pv then
      A[k][j] := A[k][j] - temp*A[pv][j];
    for j := 1 to N do  //全列処理(単位行列)
     if k <> pv then
      RA[k][j] := RA[k][j] - temp*RA[pv][j];
   end;
  end;
 end;
 Result := 1;
end;

873 名前:日高 [2020/11/28(土) 09:30:40.59 ID:0fpuH75L.net]
>812
nが自然数でなければ明確に反例が知られている。

nが無理数ならば、反例があります。



874 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:33:10.91 ID:LpYp+oBb.net]
悪霊退散!!!
function Formalize(var S: String): Boolean;
var
 i : Integer;
 dmy: String;
begin
 Result := False;
 if S = '' then Exit;      // 空文字はエラー
 for i := 1 to Length(S) do   // 不正な文字があるとエラー
  if not ( S[i] in ['0'..'9', '+', '-', '*', '/',
           '(', ')', '.'] ) then Exit;
 dmy := S;  i := 1;
 while i <= Length(S) do
  if not ( S[i] in ['(', ')'] ) then Delete(S, i, 1)
  else Inc(i);
 while Pos('()', S) > 0 do
  Delete(S, Pos('()', S), 2);
 if Length(S) > 0 then Exit;
 S := dmy;
 if S[1]     in ['+', '-', '*', '/', ')', '.'] then Exit;
 if S[Length(S)] in ['+', '-', '*', '/', '(', '.'] then Exit;
 for i := 1 to Length(S) - 1 do
 begin
  if (S[i]  in ['+', '-', '*', '/', '.', '(']) and
    (S[i+1] in ['+', '-', '*', '/', '.', ')']) then Exit;
 end;
 for i := 2 to Length(S) - 1 do
  if (S[i] = '.') then
   if not ((S[i-1] in ['0'..'9']) and (S[i+1] in ['0'..'9'])) then Exit;
 Result := True;
end;

875 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:34:08.30 ID:LpYp+oBb.net]
悪霊退散!!!
procedure NextToken;
begin
 case GNum of
  '0'..'9':
    GetNumber;
    GTOKEN := C_NUMBER;
  '+','-':
    GOP := GNum;
    GTOKEN := C_ADD;
  '*','/':
    GOP := GNum;
    GTOKEN := C_MUL;
   '(':
    GTOKEN := C_LPAREN;
   ')':
    GTOKEN := C_RPAREN;
   ')':
    GTOKEN := C_RPAREN;
   '#':
     GTOKEN := C_OTHERS;
 end;
 if not (GNum in ['0'..'9', '#']) then GNum := ReadChar; // 先読み
end;

876 名前:日高 [2020/11/28(土) 09:34:13.71 ID:0fpuH75L.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

877 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:35:22.57 ID:LpYp+oBb.net]
悪霊退散!!!
function Expression: Extended;
var
 op : Char
 sign: Integer;
 u,v : Extended;
begin
 u := Term;
 while GTOKEN := C_ADD do
 begin
  op := GOP;          // オペレータを保存
  NextToken;          // '+','-' を読みとばす
  v := Term;
  if op = '+' then u := u+v
  else       u := u-v;
 end;
 Result := u;
end;

function Term: Extended;
var
 op: Char;
 u,v: Extended;
begin
 u := Factor;;
 while GTOKEN := C_MUL do
 begin
  op := GOP;          // オペレータを保存
  NextToken;          // '*','/' を読みとばす
  v := Factor;
  case op of
   '*': u := u*v;
   '/': u := u/ v;
  else //Error!

878 名前:
  end;
 end;
 Result := u;
end;
[]
[ここ壊れてます]

879 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:36:29.99 ID:LpYp+oBb.net]
悪霊退散!!!
function Factor: Extended;
var
 v: Extended;
begin
 case GTOKEN of
  C_LPAREN:          // 左括弧の場合
   NextToken;         // '(' を読みとばす
   v := Expression;      // 「式」の処理
   if GTOKEN = C_RPAREN then // ')' が来ているはず。チェック
    NextToken        // ')' を読みとばす
   else
    ErrorOut;
  C_NUMBER:          // 数値の場合
   v := GVALUE;        // 数値の処理をする
   NextToken;         // 数値を読みとばす
 else:
  ErrorOut;          // "(" でも数値でもなければ、エラー
 end;
 Result := v;
end;

880 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:39:14.00 ID:LpYp+oBb.net]
悪霊退散!!!
int main()
{
  int i;
  double k, p, dk, kmin, kmax, pmin, pmax;

  printf("kmin = "); scanf("%lf", &kmin);
  printf("kmax = "); scanf("%lf", &kmax);
  printf("pmin = "); scanf("%lf", &pmin);
  printf("pmax = "); scanf("%lf", &pmax);
  gr_on(); gr_window(kmin, pmin, kmax, pmax, 0, 0);
  dk = (kmax - kmin) / (XMAX - 1);
  for (k = kmin; k <= kmax; k += dk) {
    p = 0.3;
    for (i = 1; i <= 50; i++) p += k * p * (1 - p);
    for (i = 51; i <= 100; i++) {
      if (p >= pmin && p <= pmax)
        gr_wdot(k, p, WHITE);
      p += k * p * (1 - p);
    }
  }
  hitanykey();
  return EXIT_SUCCESS;
}

881 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:40:20.75 ID:LpYp+oBb.net]
悪霊退散!!!
#define N 24
#define PI 3.14159265358979323846264
long double latan(long double x) /* アークタンジェント */
{
  int i, sgn;
  long double a;

  if   (x > 1) { sgn = 1; x = 1 / x; }
  else if (x < -1) { sgn = -1; x = 1 / x; }
  else        sgn = 0;
  a = 0;
  for (i = N; i >= 1; i--)
    a = (i * i * x * x) / (2 * i + 1 + a);
  if (sgn > 0) return PI / 2 - x / (1 + a);
  if (sgn < 0) return -PI / 2 - x / (1 + a);
  /* else */  return      x / (1 + a);
}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>

int main()
{
  int i;
  long double x, y;

  printf(" x  %-*s 左のtan\n", LDBL_DIG + 2, "自家製atan");
  for (i = -10; i <= 10; i++) {
    x = i / 4.0L; y = latan(x);
    printf("%5.2Lf %*.*Lf % g\n",
      x, LDBL_DIG + 2, LDBL_DIG - 1, y, tan((double)y));
  }
  return EXIT_SUCCESS;
}

882 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:41:10.31 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>

double gcd(double x, double y) /* 最大公約数 */
{
  double t;

  while (y != 0) { t = fmod(x, y); x = y; y = t; }
  return x;
}

#define N 40

int main()
{
  int i, n;
  double q, b1, b2, d;
  static double t[N + 1];

  q = 1;
  t[1] = 1;
  for (n = 2; n <= N; n++) {
    for (i = 1; i < n; i++) t[i - 1] = i * t[i];
    t[n - 1] = 0;
    for (i = n; i >= 2; i--) t[i] += t[i - 2];
    if (n % 2 == 0) {
      q *= 4;
      b1 = n * t[0]; b2 = q * (q - 1);
      if (b1 < 1 / DBL_EPSILON && b2 < 1 / DBL_EPSILON) {
        d = gcd(b1, b2); b1 /= d; b2 /= d;
        printf("|B(%2d)| = %.0f/%.0f\n", n, b1, b2);
      } else
        printf("|B(%2d)| = %g\n", n, b1 / b2);
    }
  }
  return EXIT_SUCCESS;
}

883 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:42:55.51 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <math.h>

#define EPS   1e-10        /* 許容相対誤差 */
#define odd(x)  ((x) & 1)      /* 奇数? */
#define PI    3.14159265358979324 /* $\pi$ */
#define EULER  0.577215664901532861 /* Eulerの定数 $\gamma$ */

double BesJ(int n, double x)  /* $J_n(x)$ */
{
  int k;
  double a, b, r, s;
  const double x_2 = x / 2;

  if (x < 0) {
    



884 名前:if (odd(n)) return -BesJ(n, -x);
    /* else */ return BesJ(n, -x);
  }
  if (n < 0) {
    if (odd(n)) return -BesJ(-n, x);
    /* else */ return BesJ(-n, x);
  }
  if (x == 0) return (n == 0);
  a = s = 0; b = 1;
  k = n; if (k < x) k = x;
  do { k++; } while ((b *= x_2 / k) > EPS);
  if (odd(k)) k++; /* 奇数なら偶数にする */
  while (k > 0) {
    s += b;
    a = 2 * k * b / x - a; k--; /* $a = J_k(x)$ */
    if (n == k) r = a;      /* $k$ 奇数 */
    b = 2 * k * a / x - b; k--; /* $b = J_k(x)$ */
    if (n == k) r = b;      /* $k$ 偶数 */
  }
  return r / (2 * s + b);
    /* $J_0 + 2(J_2 + J_4 + \cdots) = 1$ となるように規格化 */
}
[]
[ここ壊れてます]

885 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:43:53.99 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <stdlib.h>
int main()
{
  int year, month, day, dayofweek;
  static char name[7][10] = {
    "Sunday", "Monday", "Tuesday", "Wednesday",
    "Thursday", "Friday", "Saturday" };

  printf("Year ? "); scanf("%d", &year);
  printf("Month? "); scanf("%d", &month);
  printf("Day ? "); scanf("%d", &day);
  if (month < 3) { year--; month += 12; }
  dayofweek = (year + year / 4 - year / 100 + year / 400
    + (13 * month + 8) / 5 + day) % 7;
  printf("It's %s.\n", name[dayofweek]);
  return EXIT_SUCCESS;
}

886 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:45:24.56 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <math.h>

void corrcoef1(int n, float x[], float y[])
{
  int i;
  float sx, sy, sxx, syy, sxy, dx, dy;

  sx = sy = sxx = syy = sxy = 0;
  for (i = 0; i < n; i++) {
    sx += x[i]; sy += y[i];
  }
  sx /= n; sy /= n;
  for (i = 0; i < n; i++) {
    dx = x[i] - sx; dy = y[i] - sy;
    sxx += dx * dx; syy += dy * dy; sxy += dx * dy;
  }
  sxx = sqrt(sxx / (n - 1));
  syy = sqrt(syy / (n - 1));
  sxy /= (n - 1) * sxx * syy;
  printf("標準偏差 %g %g 相関係数 %g\n", sxx, syy, sxy);
}

void corrcoef2(int n, float x[], float y[])
{
  int i;
  float sx, sy, sxx, syy, sxy;

  sx = sy = sxx = syy = sxy = 0;
  for (i = 0; i < n; i++) {
    sx += x[i]; sy += y[i];
    sxx += x[i] * x[i];
    syy += y[i] * y[i];
    sxy += x[i] * y[i];
  }
  sx /= n; sxx = (sxx - n * sx * sx) / (n - 1);
  sy /= n; syy = (syy - n * sy * sy) / (n - 1);
  if (sxx > 0) sxx = sqrt(sxx); else sxx = 0;
  if (syy > 0) syy = sqrt(syy); else syy = 0;
  sxy = (sxy - n * sx * sy) / ((n - 1) * sxx * syy);
  printf("標準偏差 %g %g 相関係数 %g\n", sxx, syy, sxy);
}

887 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:46:21.82 ID:LpYp+oBb.net]
悪霊退散!!!

void corrcoef3(int n, float x[], float y[])
{
  int i;
  float sx, sy, sxx, syy, sxy, dx, dy;

  sx = sy = sxx = syy = sxy = 0;
  for (i = 0; i < n; i++) {
    dx = x[i] - sx; sx += dx / (i + 1);
    dy = y[i] - sy; sy += dy / (i + 1);
    sxx += i * dx * dx / (i + 1);
    syy += i * dy * dy / (i + 1);
    sxy += i * dx * dy / (i + 1);
  }
  sxx = sqrt(sxx / (n - 1));
  syy = sqrt(syy / (n - 1));
  sxy /= (n - 1) * sxx * syy;
  printf("標準偏差 %g %g 相関係数 %g\n", sxx, syy, sxy);
}

888 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:48:42.35 ID:LpYp+oBb.net]
悪霊退散!!!
#include <math.h>
#define N 8
static double coef[20] = {
   8.333333333333333333333333333e-2, /* 1/12 */
  -1.388888888888888888888888889e-3, /* -1/720 */
   3.306878306878306878306878307e-5, /* 1/30240 */
  -8.267195767195767195767195767e-7, /* -1/1209600 */
   2.087675698786809897921009032e-8, /* 1/47900160 */
  -5.284190138687493184847682202e-10,
   1.338253653068467883282698098e-11,
  -3.389680296322582866830195391e-13,
   8.586062056277844564135905450e-15,
  -2.174868698558061873041516424e-16,
   5.509002828360229515202652609e-18,
  -1.395446468581252334070768626e-19,
   3.534707039629467471693229977e-21,
  -8.953517427037546850402611251e-23,
   2.267952452337683060310950058e-24,
  -5.744790668872202445263829503e-26,
   1.455172475614864901866244572e-27,
  -3.685994940665310178130050728e-29,
   9.336734257095044668660153106e-31,
  -2.365022415700629886484029550e-32
};

889 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:49:07.89 ID:LpYp+oBb.net]
悪霊退散!!!
double zeta(double x)
{
  int i;
  double powNx, w, z, zprev;

  z = 1;
  for (i = 2; i < N; i++) {
    zprev = z;
    z += pow(i, -x);
    if (z == zprev) return z;
  }
  powNx = pow(N, x);
  w = x / (N * powNx);
  z += 0.5 / powNx + N / ((x - 1) * powNx) + coef[0] * w;
  for (i = 1; i < 20 && z != zprev; i++) {
    w *= (x + 2 * i - 1) * (x + 2 * i) / (N * N);
    zprev = z;
    z += coef[i] * w;
  }
  return z;
}

890 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:50:28.37 ID:LpYp+oBb.net]
悪霊退散!!!
unsigned phi(unsigned x)
{
  unsigned d, t;

  t = x;
  if (x % 2 == 0) {
    t /= 2;
    do { x /= 2; } while (x % 2 == 0);
  }
  d = 3;
  while (x / d >= d) {
    if (x % d == 0) {
      t = t / d * (d - 1);
      do { x /= d; } while (x % d == 0);
    }
    d += 2;
  }
  if (x > 1) t = t / x * (x - 1);
  return t;
}

#include <stdio.h>
#include <stdlib.h>

int main()
{
  int i, j;

  printf("オイラーの関数 φ(1),…,φ(200)\n   ");
  for (j = 1; j <= 10; j++) printf(" +%2d", j);
  printf("\n   ");
  for (j = 1; j <= 10; j++) printf("-----");
  printf("\n");
  for (i = 0; i < 20; i++) {
    printf("%3d |", 10 * i);
    for (j = 1; j <= 10; j++) printf("%5d", phi(10 * i + j));
    printf("\n");
  }
  return EXIT_SUCCESS;
}

891 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:51:43.33 ID:LpYp+oBb.net]
悪霊退散!!!
#define N 5
double x[N] = {  0,   10,   20,   30,   40  },
    y[N] = { 610.66, 1227.4, 2338.1, 4244.9, 7381.2 },
    z[N];

void maketable(double x[], double y[], double z[])
{
  int i;
  double t;
  static double h[N], d[N];

  z[0] = 0; z[N - 1] = 0; /* 両端点での y''(x) / 6 */
  for (i = 0; i < N - 1; i++) {
    h[i  ] = x[i + 1] - x[i];
    d[i + 1] = (y[i + 1] - y[i]) / h[i];
  }
  z[1] = d[2] - d[1] - h[0] * z[0];
  d[1] = 2 * (x[2] - x[0]);
  for (i = 1; i < N - 2; i++) {
    t = h[i] / d[i];
    z[i + 1] = d[i + 2] - d[i + 1] - z[i] * t;
    d[i + 1] = 2 * (x[i + 2] - x[i]) - h[i] * t;
  }
  z[N - 2] -= h[N - 2] * z[N - 1];
  for (i = N - 2; i > 0; i--)
    z[i] = (z[i] - h[i] * z[i + 1]) / d[i];
}

892 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:52:13.86 ID:LpYp+oBb.net]
悪霊退散!!!
double spline(double t, double x[], double y[], double z[])
{
  int i, j, k;
  double d, h;

  i = 0; j = N - 1;
  while (i < j) {
    k = (i + j) / 2;
    if (x[k] < t) i = k + 1; else j = k;
  }
  if (i > 0) i--;
  h = x[i + 1] - x[i]; d = t - x[i];
  return (((z[i + 1] - z[i]) * d / h + z[i] * 3) * d
    + ((y[i + 1] - y[i]) / h
    - (z[i] * 2 + z[i + 1]) * h)) * d + y[i];
}

893 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:53:24.39 ID:LpYp+oBb.net]
悪霊退散!!!
#define TEST 1

#if TEST
  int count = 0;
#endif

int A(int x, int y)
{
  #if TEST
    count++;
  #endif
  if (x == 0) return y + 1;
  if (y == 0) return A(x - 1, 1);
  return A(x - 1, A(x, y - 1));
}

#include <stdio.h>
#include <stdlib.h>

int main()
{
  printf("A(3, 3) = %d\n", A(3, 3));
  #if TEST
    printf("A(x, y) は %d 回呼び出されました.\n", count);
  #endif
  return EXIT_SUCCESS;
}



894 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:55:52.58 ID:LpYp+oBb.net]
悪霊退散!!!
static void output(int bit) /* {\tt bit} に続いてその補数を {\tt ns} 個出力 */
{
  putbit(bit); /* 1ビット書き出す */
  while (ns > 0) { putbit(! bit); ns--; } /* その補数を書き出す */
}

void encode(void) /* 圧縮 */
{
  int c;
  unsigned long range, maxcount, incount, cr, d;
  unsigned short low, high;
  static unsigned long count[N];

  for (c = 0; c < N; c++) count[c] = 0; /* 頻度の初期化 */
  while ((c = getc(infile)) != EOF) count[c]++; /* 各文字の頻度 */
  incount = 0; maxcount = 0; /* 原文の大きさ, 頻度の最大値 */
  for (c = 0; c < N; c++) {
    incount += count[c];
    if (count[c] > maxcount) maxcount = count[c];
  }
  if (incount == 0) return; /* 0バイトのファイル */
  /* 頻度合計が {\tt Q1} 未満, 各頻度が1バイトに収まるよう規格化 */
  d = max((maxcount + N - 2) / (N - 1),
      (incount + Q1 - 257) / (Q1 - 256));
  if (d != 1)
    for (c = 0; c < N; c++)
      count[c] = (count[c] + d - 1) / d;
  cum[0] = 0;
  for (c = 0; c < N; c++) {
    f

895 名前:putc((int)count[c], outfile); /* 頻度表の出力 */
    cum[c + 1] = cum[c] + (unsigned)count[c]; /* 累積頻度 */
  }
[]
[ここ壊れてます]

896 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:56:31.59 ID:LpYp+oBb.net]
悪霊退散!!!
  outcount = N;
  rewind(infile); incount = 0; /* 巻き戻して再走査 */
  low = 0; high = USHRT_MAX; ns = 0;
  while ((c = getc(infile)) != EOF) { /* 各文字を符号化 */
    range = (unsigned long)(high - low) + 1;
    high = (unsigned short)
        (low + (range * cum[c + 1]) / cum[N] - 1);
    low = (unsigned short)
        (low + (range * cum[c  ]) / cum[N]);
    for ( ; ; ) {
      if   (high < Q2) output(0);
      else if (low >= Q2) output(1);
      else if (low >= Q1 && high < Q3) {
        ns++; low -= Q1; high -= Q1;
      } else break;
      low <<= 1; high = (high << 1) + 1;
    }
    if ((++incount & 1023) == 0) printf("%12lu\r", incount);
  }

897 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:57:10.88 ID:LpYp+oBb.net]
悪霊退散!!!
int binarysearch(unsigned x) /* $\mbox{\tt cum[i]} \le x < \mbox{\tt cum[i+1]}$ となる {\tt i} を二分探索で求める */
{
  int i, j, k;

  i = 1; j = N;
  while (i < j) {
    k = (i + j) / 2;
    if (cum[k] <= x) i = k + 1; else j = k;
  }
  return i - 1;
}

898 名前:132人目の素数さん mailto:sage [2020/11/28(土) 09:57:37.15 ID:LpYp+oBb.net]
悪霊退散!!!
void decode(unsigned long size) /* 復元 */
{
  int c;
  unsigned char count[N];
  unsigned short low, high, value;
  unsigned long i, range;

  if (size == 0) return; /* 0バイトのファイル */
  cum[0] = 0;
  for (c = 0; c < N; c++) {
    count[c] = fgetc(infile); /* 頻度分布を読む */
    cum[c + 1] = cum[c] + count[c]; /* 累積頻度を求める */
  }
  value = 0;
  for (c = 0; c < USHRT_BIT; c++)
    value = 2 * value + getbit(); /* バッファを満たす */
  low = 0; high = USHRT_MAX;
  for (i = 0; i < size; i++) { /* 各文字を復元する */
    range = (unsigned long)(high - low) + 1;
    c = binarysearch((unsigned)((((unsigned long)
      (value - low) + 1) * cum[N] - 1) / range));
    high = (unsigned short)
        (low + (range * cum[c + 1]) / cum[N] - 1);
    low = (unsigned short)
        (low + (range * cum[c  ]) / cum[N]);
    for ( ; ; ) {
      if   (high < Q2) { /* 何もしない */ }
      else if (low >= Q2) { /* 何もしない */ }
      else if (low >= Q1 && high < Q3) {
        value -= Q1; low -= Q1; high -= Q1;
      } else break;
      low <<= 1; high = (high << 1) + 1;
      value = (value << 1) + getbit(); /* 1ビット読む */
    }
    putc(c, outfile); /* 復元した文字を書き出す */
    if ((i & 1023) == 0) printf("%12lu\r", i);
  }
  printf("%12lu\n", size); /* 原文のバイト数 */
}

899 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:07:04.52 ID:LpYp+oBb.net]
悪霊退散!!!
int change(int n, int k) /* 再帰版 */
{
  int s;

  if (n < 0) return 0;
  s = 1 + n / 5 + change(n - 10, 10);
  if (k >= 50) s += change(n - 50, 50);
  if (k >= 100) s += change(n - 100, 100);
  return s;
}

int change1(int n) /* 非再帰版 */
{
  int i, j, s, t, u;

  s = 0;
  for (i = n / 100; i >= 0; i--) {   /* 100円玉 */
    t = n - 100 * i;
    for (j = t / 50; j >= 0; j--) { /* 50円玉 */
      u = t - 50 * j;
      s += (1 + u / 5 - u / 10) * (1 + u / 10);
    }
  }
  return s;
}

#include <stdio.h>
#include <stdlib.h>

int main()
{
  int i;

  printf("お金の払い方\n");
  printf(" 金額  再帰版 非再帰版\n");
  for (i = 0; i <= 500; i += 5)
    printf("%6d %8d %8d\n", i, change(i, i), change1(i));
  return EXIT_SUCCESS;
}

900 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:08:41.83 ID:LpYp+oBb.net]
#include <math.h>
#define PI 3.14159265358979323846264
double p_nor(double z) /* 正規分布の下側累積確率 */
{
  int i;
  double z2, prev, p, t;

  z2 = z * z;
  t = p = z * exp(-0.5 * z2) / sqrt(2 * PI);
  for (i = 3; i < 200; i += 2) {
    prev = p; t *= z2 / i; p += t;
    if (p == prev) return 0.5 + p;
  }
  return (z > 0);
}

double q_nor(double z) /* 正規分布の上側累積確率 */
{
  return 1 - p_nor(z);
}

double q_chi2(int df, double chi2) /* 上側累積確率 */
{
  int k;
  double s, t, chi;

  if (df & 1) { /* 自由度が奇数 */
    chi = sqrt(chi2);
    if (df == 1) return 2 * q_nor(chi);
    s = t = chi * exp(-0.5 * chi2) / sqrt(2 * PI);
    for (k = 3; k < df; k += 2) {
      t *= chi2 / k; s += t;
    }
    return 2 * (q_nor(chi) + s);
  } else {   /* 自由度が偶数 */
    s = t = exp(-0.5 * chi2);
    for (k = 2; k < df; k += 2) {
      t *= chi2 / k; s += t;
    }
    return s;
  }
}

double p_chi2(int df, double chi2) /* 下側累積確率 */
{
  return 1 - q_chi2(df, chi2);
}

901 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:09:51.79 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <math.h>
#define EULER 0.577215664901532860606512090082 /* Eulerの定数 $\gamma$ */

static double Ci_series(double x) /* 級数展開 */
{
  int k;
  double s, t, u;

  s = EULER + log(x);
  x = - x * x; t = 1;
  for (k = 2; k < 1000; k += 2) {
    t *= x / ((k - 1) * k);
    u = s; s += t / k;
    if (s == u) return s;
  }


902 名前:  printf("Si_series(): 収束しません.\n");
  return s;
}

double Ci_asympt(double x) /* 漸近展開 */
{
  int k, flag;
  double t, f, g, fmax, fmin, gmax, gmin;

  fmax = gmax = 2; fmin = gmin = 0;
  f = g = 0; t = 1 / x;
  k = flag = 0;
  while (flag != 15) {
    f += t; t *= ++k / x;
    if (f < fmax) fmax = f; else flag |= 1;
    g += t; t *= ++k / x;
    if (g < gmax) gmax = g; else flag |= 2;
    f -= t; t *= ++k / x;
    if (f > fmin) fmin = f; else flag |= 4;
    g -= t; t *= ++k / x;
    if (g > gmin) gmin = g; else flag |= 8;
  }
  return 0.5 * ((fmax + fmin) * sin(x)
        - (gmax + gmin) * cos(x));
}

double Ci(double x)
{
  if (x < 0) return -Ci(-x);
  if (x < 18) return Ci_series(x);
  return       Ci_asympt(x);
}
[]
[ここ壊れてます]

903 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:10:55.27 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define LIMIT ((ULONG_MAX - 1) / 3)

int main()
{
  unsigned long n;

  printf("n = "); scanf("%lu", &n);
  while (n > 1) {
    if (n & 1) { /* 奇数 */
      if (n > LIMIT) {
        printf("\nOverflow\n"); return 1;
      } else n = 3 * n + 1;
    } else n /= 2;
    printf(" %lu", n);
  }
  printf("\n");
  return EXIT_SUCCESS;
}



904 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:11:57.73 ID:LpYp+oBb.net]
悪霊退散!!!
int comb(int n, int k)
{
  if (k == 0 || k == n) return 1;
  /* if (k == 1) return n; */
  return comb(n - 1, k - 1) + comb(n - 1, k);
}

unsigned long combination(int n, int k)
{
  int i, j;
  unsigned long a[17];

  if (n - k < k) k = n - k;
  if (k == 0) return 1;
  if (k == 1) return n;
  if (k > 17) return 0; /* error */
  for (i = 1; i < k; i++) a[i] = i + 2;
  for (i = 3; i <= n - k + 1; i++) {
    a[0] = i;
    for (j = 1; j < k; j++) a[j] += a[j - 1];
  }
  return a[k - 1];
}

905 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:13:43.71 ID:LpYp+oBb.net]
#define SCALAR double
#include "matutil.c"
#include <math.h>

double lu(int n, matrix a, int *ip) /* LU分解 */
{
  int i, j, k, ii, ik;
  double t, u, det;
  vector weight;

  weight = new_vector(n);  /* {\tt weight[0..n-1]} の記憶領域確保 */
  det = 0;          /* 行列式 */
  for (k = 0; k < n; k++) { /* 各行について */
    ip[k] = k;       /* 行交換情報の初期値 */
    u = 0;         /* その行の絶対値最大の要素を求める */
    for (j = 0; j < n; j++) {
      t = fabs(a[k][j]); if (t > u) u = t;
    }
    if (u == 0) goto EXIT; /* 0 なら行列はLU分解できない */
    weight[k] = 1 / u;   /* 最大絶対値の逆数 */
  }
  det = 1;          /* 行列式の初期値 */
  for (k = 0; k < n; k++) { /* 各行について */
    u = -1;
    for (i = k; i < n; i++) { /* より下の各行について */
      ii = ip[i];      /* 重み×絶対値 が最大の行を見つける */
      t = fabs(a[ii][k]) * weight[ii];
      if (t > u) { u = t; j = i; }
    }
    ik = ip[j];
    if (j != k) {
      ip[j] = ip[k]; ip[k] = ik; /* 行番号を交換 */
      det = -det; /* 行を交換すれば行列式の符号が変わる */
    }
    u = a[ik][k]; det *= u; /* 対角成分 */
    if (u == 0) goto EXIT;  /* 0 なら行列はLU分解できない */
    for (i = k + 1; i < n; i++) { /* Gauss消去法 */
      ii = ip[i];
      t = (a[ii][k] /= u);
      for (j = k + 1; j < n; j++)
        a[ii][j] -= t * a[ik][j];
    }
  }
EXIT:
  free_vector(weight); /* 記憶領域を解放 */
  return det;      /* 戻り値は行列式 */
}

906 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:14:24.10 ID:LpYp+oBb.net]
悪霊退散!!!
double matinv(int n, matrix a, matrix a_inv)
{
  int i, j, k, ii;
  double t, det;
  int *ip;  /* 行交換の情報 */

  ip = malloc(sizeof(int) * n);
  if (ip == NULL) error("記憶領域不足");
  det = lu(n, a, ip);
  if (det != 0)
    for (k = 0; k < n; k++) {
      for (i = 0; i < n; i++) {
        ii = ip[i]; t = (ii == k);
        for (j = 0; j < i; j++)
          t -= a[ii][j] * a_inv[j][k];
        a_inv[i][k] = t;
      }
      for (i = n - 1; i >= 0; i--) {
        t = a_inv[i][k]; ii = ip[i];
        for (j = i + 1; j < n; j++)
          t -= a[ii][j] * a_inv[j][k];
        a_inv[i][k] = t / a[ii][i];
      }
    }
  free(ip);
  return det;
}

double infinity_norm(int n, matrix a) /* ∞ノルム */
{
  int i, j;
  double rowsum, max;

  max = 0;
  for (i = 0; i < n; i++) {
    rowsum = 0;
    for (j = 0; j < n; j++) rowsum += fabs(a[i][j]);
    if (rowsum > max) max = rowsum;
  }
  return max;
}

907 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:43:01.09 ID:LpYp+oBb.net]
悪霊退散!!!
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
enum {FALSE, TRUE};

#define N 10 /* 最大の行数 */

int imax, jmax, solution,
  word[N][128], digit[256], low[256], ok[10];

void found(void) /* 解の表示 */
{
  int i, j, c;

  printf("\n解 %d\n", ++solution);
  for (i = 0; i <= imax; i++) {
    for (j = jmax; j >= 0; j--) {
      c = word[i][j];
      if (c != '\0') printf("%d", digit[c]);
      else      printf(" ");
    }
    printf("\n");
  }
}

908 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:43:37.17 ID:LpYp+oBb.net]
悪霊退散!!!

void try(int sum) /* 再帰的に試みる */
{
  static int i = 0, j = 0, carry;
  int c, d;

  c = word[i][j];
  if (i < imax) {
    i++;
    if ((d = digit[c]) < 0) { /* 定まっていないなら */
      for (d = low[c]; d <= 9; d++)
        if (ok[d]) {
          digit[c] = d; ok[d] = FALSE;
          try(sum + d); ok[d] = TRUE;
        }
      digit[c] = -1;
    } else try(sum + d);
    i--;
  } else {
    j++; i = 0; d = sum % 10; carry = sum / 10;
    if (digit[c] == d) {
      if (j <= jmax) try(carry);
      else if (carry == 0) found();
    } else if (digit[c] < 0 && ok[d] && d >= low[c]) {
      digit[c] = d; ok[d] = FALSE;
      if (j <= jmax) try(carry);
      else if (carry == 0) found();
      digit[c] = -1; ok[d] = TRUE;
    }
    j--; i = imax;
  }
}

909 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:44:57.61 ID:LpYp+oBb.net]
悪霊退散!!!

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
enum {FALSE, TRUE};

#define N 10 /* 最大の行数 */

int imax, jmax, solution,
  word[N][128], digit[256], low[256], ok[10];

void found(void) /* 解の表示 */
{
  int i, j, c;

  printf("\n解 %d\n", ++solution);
  for (i = 0; i <= imax; i++) {
    for (j = jmax; j >= 0; j--) {
      c = word[i][j];
      if (c != '\0') printf("%d", digit[c]);
      else      printf(" ");
    }
    printf("\n");
  }
}
#include <math.h>
#define PI   3.14159265358979324 /* $\pi$ */
#define LOG_2PI 1.83787706640934548 /* $\log 2\pi$ */
#define N    8

#define B0 1         /* 以下はBernoulli数 */
#define B1 (-1.0 / 2.0)
#define B2 ( 1.0 / 6.0)
#define B4 (-1.0 / 30.0)
#define B6 ( 1.0 / 42.0)
#define B8 (-1.0 / 30.0)
#define B10 ( 5.0 / 66.0)
#define B12 (-691.0 / 2730.0)
#define B14 ( 7.0 / 6.0)
#define B16 (-3617.0 / 510.0)

double loggamma(double x) /* ガンマ関数の対数 */
{
  double v, w;

  v = 1;
  while (x < N) { v *= x; x++; }
  w = 1 / (x * x);
  return ((((((((B16 / (16 * 15)) * w + (B14 / (14 * 13))) * w
        + (B12 / (12 * 11))) * w + (B10 / (10 * 9))) * w
        + (B8 / ( 8 * 7))) * w + (B6 / ( 6 * 5))) * w
        + (B4 / ( 4 * 3))) * w + (B2 / ( 2 * 1))) / x
        + 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
}

910 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:45:32.09 ID:LpYp+oBb.net]
悪霊退散!!!

double gamma(double x) /* ガンマ関数 */
{
  if (x < 0)
    return PI / (sin(PI * x) * exp(loggamma(1 - x)));
  return exp(loggamma(x));
}

double beta(double x, double y) /* ベータ関数 */
{
  return exp(loggamma(x) + loggamma(y) - loggamma(x + y));
}

911 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:47:04.37 ID:LpYp+oBb.net]
悪霊退散!!!

#include "matutil.c"

void gauss5(int n, vector diag, vector sub1, vector sub2,
      vector sup1, vector sup2, vector b)
{
  int i;
  double t;

  for (i = 0; i < n - 2; i++) { /* 消去法 */
    t = sub1[i] / diag[i];
    diag[i + 1] -= t * sup1[i];
    sup1[i + 1] -= t * sup2[i];
    b  [i + 1] -= t * b  [i];
    t = sub2[i] / diag[i];
    sub1[i + 1] -= t * sup1[i];
    diag[i + 2] -= t * sup2[i];
    b  [i + 2] -= t * b  [i];
  }
  t = sub1[n - 2] / diag[n - 2];
  diag[n - 1] -= t * sup1[n - 2];
  b  [n - 1] -= t * b  [n - 2];
  b[n - 1] /= diag[n - 1];    /* 後退代入 */
  b[n - 2] = (b[n - 2] - sup1[n - 2] * b[n - 1]) / diag[n - 2];
  for (i = n - 3; i >= 0; i--)
    b[i] = (b[i] - sup1[i] * b[i + 1]
        - sup2[i] * b[i + 2]) / diag[i];
}

912 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:48:46.51 ID:LpYp+oBb.net]
#include <math.h>

double goldsect(double a, double b,
        double tolerance, double (*f)(double x))
{
  const double r = 2 / (3 + sqrt(5));
  double c, d, fc, fd, t;

  if (a > b) { t = a; a = b; b = t; }
  t = r * (b - a); c = a + t; d = b - t;
  fc = f(c); fd = f(d);
  for ( ; ; ) {
    if (fc > fd) {
      a = c; c = d; fc = fd; d = b - r * (b - a);
      if (d - c <= tolerance) return c;
      fd = f(d);
    } else {
      b = d; d = c; fd = fc; c = a + r * (b - a);
      if (d - c <= tolerance) return d;
      fc = f(c);
    }
  }
}

#include <stdio.h>
#include <stdlib.h>
#define TEST 1

double func(double x) /* 最小化する関数 */
{
  

913 名前:static int count = 0;
  const double xmin = 0.314;
  double value;

  value = (x - xmin) * (x - xmin);
  #if TEST
    printf("%4d: f(%g) = %g\n", ++count, x, value);
  #endif
  return value;
}
[]
[ここ壊れてます]



914 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:50:06.99 ID:LpYp+oBb.net]
#include "bitio.c"       /* ビット入出力 */

#define N    256       /* 文字の種類 */
#define CHARBITS 8       /* 1バイトのビット数 */
int heapsize, heap[2*N-1],   /* 優先待ち行列用ヒープ */
  parent[2*N-1], left[2*N-1], right[2*N-1]; /* Huffman木 */
unsigned long int freq[2*N-1]; /* 各文字の出現頻度 */

static void downheap(int i) /* 優先待ち行列に挿入 */
{
  int j, k;

  k = heap[i];
  while ((j = 2 * i) <= heapsize) {
    if (j < heapsize && freq[heap[j]] > freq[heap[j + 1]])
      j++;
    if (freq[k] <= freq[heap[j]]) break;
    heap[i] = heap[j]; i = j;
  }
  heap[i] = k;
}

void writetree(int i) /* 枝を出力 */
{
  if (i < N) { /* 葉 */
    putbit(0);
    putbits(CHARBITS, i); /* 文字そのもの */
  } else {   /* 節 */
    putbit(1);
    writetree(left[i]); writetree(right[i]); /* 左右の枝 */
  }
}

915 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:55:02.73 ID:LpYp+oBb.net]
悪霊退散!!!

#include "bitio.c"       /* ビット入出力 */

#define N    256       /* 文字の種類 */
#define CHARBITS 8       /* 1バイトのビット数 */
int heapsize, heap[2*N-1],   /* 優先待ち行列用ヒープ */
  parent[2*N-1], left[2*N-1], right[2*N-1]; /* Huffman木 */
unsigned long int freq[2*N-1]; /* 各文字の出現頻度 */

static void downheap(int i) /* 優先待ち行列に挿入 */
{
  int j, k;

  k = heap[i];
  while ((j = 2 * i) <= heapsize) {
    if (j < heapsize && freq[heap[j]] > freq[heap[j + 1]])
      j++;
    if (freq[k] <= freq[heap[j]]) break;
    heap[i] = heap[j]; i = j;
  }
  heap[i] = k;
}

void writetree(int i) /* 枝を出力 */
{
  if (i < N) { /* 葉 */
    putbit(0);
    putbits(CHARBITS, i); /* 文字そのもの */
  } else {   /* 節 */
    putbit(1);
    writetree(left[i]); writetree(right[i]); /* 左右の枝 */
  }
}

916 名前:132人目の素数さん mailto:sage [2020/11/28(土) 10:57:30.57 ID:LpYp+oBb.net]
悪霊退散!!!

void encode(void) /* 圧縮 */
{
  int i, j, k, avail, tablesize;
  unsigned long int incount, cr;
  static char codebit[N]; /* 符号語 */

  for (i = 0; i < N; i++) freq[i] = 0; 
  while ((i = getc(infile)) != EOF) freq[i]++; 
  heap[1] = 0; /* 長さ0のファイルに備える */
  heapsize = 0;
  for (i = 0; i < N; i++)
    if (freq[i] != 0) heap[++heapsize] = i;
  for (i = heapsize / 2; i >= 1; i--) downheap(i);
  for (i = 0; i < 2 * N - 1; i++) parent[i] = 0; /* 念のため */
  k = heap[1]; /
  avail = N; /* 以下のループでハフマン木を作る */
  while (heapsize > 1) { 
    i = heap[1]; 
    heap[1] = heap[heapsize--]; downheap(1); 
    j = heap[1]; 
    k = avail++; 
    freq[k] = freq[i] + freq[j]; 
    heap[1] = k; downheap(1); 
    parent[i] = k; parent[j] = -k; 
    left[k] = i; right[k] = j;   /* 〃 */
  }
  writetree(k); 
  tablesize = (int) outcount; 
  incount = 0; rewind(infile); 
  while ((j = getc(infile)) != EOF) {
    k = 0;
    while ((j = parent[j]) != 0)
      if (j > 0) codebit[k++] = 0;
      else {   codebit[k++] = 1; j = -j; }
    while (--k >= 0) putbit(codebit[k]);
    if ((++incount & 1023) == 0)
      printf("%12lu\r", incount);
  }
  putbits(7, 0);
  printf("In : %lu bytes\n", incount);
  printf("Out: %lu bytes (table: %d bytes)\n",
    outcount, tablesize);
  if (incount != 0) { 
    cr = (1000 * outcount + incount / 2) / incount;
    printf("Out/In: %lu.%03lu\n", cr / 1000, cr % 1000);
  }
}

917 名前:日高 [2020/11/28(土) 11:06:56.72 ID:0fpuH75L.net]
>877
悪霊退散!!!

どういう意味でしょうか?

918 名前:132人目の素数さん [2020/11/28(土) 11:12:14.24 ID:KJCRmjGK.net]
>>825
> x,y,zに関する方程式(3)の満たすべき条件は
「x^n +y^n=z^n」だけではない。
という意味です。

>「(3)の満たすべき条件」とは、どういう意味でしょうか?

「方程式」とは、変数が特定の値をとるときに成り立つ等式のことです。

x,y,zを変数とする方程式(3)において
変数(x,y,z)が満たすべき等式は
「x^n +y^n=z^n」と「z-x= n^{1/(n-1)}」
の両方である。
ということです。
ご理解、納得いただけましたか?
はい/いいえ でお答えください。

919 名前:日高 [2020/11/28(土) 11:26:01.62 ID:0fpuH75L.net]
>879
x,y,zを変数とする方程式(3)において
変数(x,y,z)が満たすべき等式は
「x^n +y^n=z^n」と「z-x= n^{1/(n-1)}」
の両方である。
ということです。
ご理解、納得いただけましたか?
はい/いいえ でお答えください。

はい。

920 名前:日高 [2020/11/28(土) 11:28:56.18 ID:0fpuH75L.net]
(修正10)
【定理

921 名前:】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
[]
[ここ壊れてます]

922 名前:132人目の素数さん mailto:sage [2020/11/28(土) 11:34:59.10 ID:g5JRJwZK.net]
>>839
> >812
> nが自然数でなければ明確に反例が知られている。
>
> nが無理数ならば、反例があります。
オマエがそれを知っていようがいまいが、書かれていることが不正確で嘘八百だと書いただけだ。

> 【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
nが自然数でなければ明確に反例が知られている。なので、これは真っ赤な嘘。
そんなことも理解できず、正確な主張すら書けない日高の書いたものは、
全てが誤魔化し。証明とは呼べない。

証明とは、正確な記述と正しい論理に基づく正確な推論の積み重ねでなければならない。

根拠を聞かれても、どのような推論をしたのかを細かく分解して説明出来ないものは証明ではない。

自分が今まで嘘をつき通してきたことが理解できるまで勉強しろ。理解できなければ返信するな。ゴミ。

923 名前:132人目の素数さん [2020/11/28(土) 11:46:26.27 ID:KJCRmjGK.net]
>>880
>はい。

では論を進めます。

(修正10)の
> (3)はn>2のとき、x,y,zは整数比とならない。

このことの理由はあなたが>>604でおっしゃったように
> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。
ですか?

はい/いいえ でお答えください。



924 名前:132人目の素数さん mailto:sage [2020/11/28(土) 12:08:21.23 ID:a85aTjy8.net]
>>809 日高
> >797
> 式が同じか違うかを質問したのではありません。
> この証明は正しいでしょうか? とお尋ねしています。
> 考えを述べてください。
>
> 式が違うので、わかりません。

x^3+8y^3=z^3はx^3+(2y)^3=z^3ですから
「x^3+8y^3=z^3は自然数解を持たない」は「x^3+y^3=z^3は自然数解を持たない」と同値な命題です。
同値であるだけでなく、同じ証明が通用するはずなんですけどね。
どうして「わかりません」なのでしょう。
実は日高さんは自分の書いた【証明】が理解できていないのでは?

925 名前:日高 [2020/11/28(土) 12:18:12.46 ID:0fpuH75L.net]
>883
このことの理由はあなたが>>604でおっしゃったように
> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。
ですか?

はい。

926 名前:日高 [2020/11/28(土) 12:23:19.90 ID:0fpuH75L.net]
>884
x^3+8y^3=z^3はx^3+(2y)^3=z^3ですから
「x^3+8y^3=z^3は自然数解を持たない」は「x^3+y^3=z^3は自然数解を持たない」と同値な命題です。
同値であるだけでなく、同じ証明が通用するはずなんですけどね。

(2y)とyは、違います。

x^3+y^3=z^3と、(2x)^3+(2y)^3=(2z)^3は、同値です。

927 名前:132人目の素数さん [2020/11/28(土) 12:34:41.65 ID:ymvak4/C.net]
>>815 何で「整数比となることと、有理数解をもつこと」は同じだと思うの?
小学生に説明するみたいに説明して下さい。

928 名前:日高 [2020/11/28(土) 12:49:38.29 ID:0fpuH75L.net]
>887
何で「整数比となることと、有理数解をもつこと」は同じだと思うの?

(sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^nとなる。(s,t,uは有理数、wは無理数)
からです。

929 名前:132人目の素数さん [2020/11/28(土) 12:49:53.10 ID:ymvak4/C.net]
>>815 ちなみに指摘されたのが『「整数比となることと、有理数解をもつこと」は違う』という事だったから、それ以外は正しいというのは都合良く妄想し過ぎじゃないの?
間違いだらけで何個もおかしい箇所がある答案だったら、とりあえずは1番重大なミスの箇所を指摘する。そういう考えはないの?

930 名前:132人目の素数さん [2020/11/28(土) 12:55:41.66 ID:ymvak4/C.net]
>>888 小学生はもちろん大学生でも


931 名前:ぜ、
(sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^nとなる。(s,t,uは有理数、wは無理数)
のが回答になるのか全くわかりません。
もっと言葉をケチらず説明して下さい。
[]
[ここ壊れてます]

932 名前:日高 [2020/11/28(土) 12:59:57.33 ID:0fpuH75L.net]
>889
とりあえずは1番重大なミスの箇所を指摘する。そういう考えはないの?

この掲示板の指摘も、他の箇所の指摘がありません。

933 名前:日高 [2020/11/28(土) 13:01:38.17 ID:0fpuH75L.net]
(修正10)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はn=2のとき、x,y,zは整数比となりえる。n>2のとき、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。



934 名前:日高 [2020/11/28(土) 13:06:42.45 ID:0fpuH75L.net]
>890
(sw)^n+(tw)^n=(uw)^nならば、s^n+t^n=u^nとなる。(s,t,uは有理数、wは無理数)
のが回答になるのか全くわかりません。

(3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。

935 名前:132人目の素数さん [2020/11/28(土) 13:08:49.51 ID:buCr9xZQ.net]
>>885
>はい。

s,t,uを正の有理数、wを正の無理数とします

> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。
これを言い換えると
「(x,y,z)=(sw,tw,uw)が方程式(3)を満たすとき、
(x,y,z)=(s,t,u)も方程式(3)を満たす」
ということでいいですか?

はい/いいえ でお答えください。

936 名前:132人目の素数さん [2020/11/28(土) 13:09:55.80 ID:ymvak4/C.net]
>>893 なぜそれが回答になるのか小学生はもちろん大学生も理解できません。

937 名前:日高 [2020/11/28(土) 13:31:34.41 ID:0fpuH75L.net]
>894
「(x,y,z)=(sw,tw,uw)が方程式(3)を満たすとき、
(x,y,z)=(s,t,u)も方程式(3)を満たす」
ということでいいですか?

はい。

938 名前:132人目の素数さん mailto:sage [2020/11/28(土) 14:00:21.32 ID:g5JRJwZK.net]
>>891
> >889
> とりあえずは1番重大なミスの箇所を指摘する。そういう考えはないの?
>
> この掲示板の指摘も、他の箇所の指摘がありません。
数学の証明においてただの一か所でも間違いがあれば、それ以外は正しかろうが全てゴミ。
それすら理解できない奴は、証明したなどとほざくな。
理解できない限り書き込みも返信もするな。

939 名前:132人目の素数さん mailto:sage [2020/11/28(土) 17:43:46.32 ID:tvtcf4HY.net]
>>893
> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。
間違い

x^2+y^2=(x+2)^2でx,y,zが整数比となるにはy=2t (tは有理数)と書けることが必要
x^2+y^2=(x+√3)^2でx,y,zが整数比となるにはy=√3*tと書けることが必要

x^3+y^3=(x+2)^3でx,y,zが整数比となるにはy=2t (tは有理数)と書けることが必要
x^3+y^3=(x+√3)^3でx,y,zが整数比となるにはy=√3*tと書けることが必要

940 名前:132人目の素数さん mailto:sage [2020/11/28(土) 19:31:42.15 ID:9zJVD458.net]
>>886 日高
> >884
> x^3+8y^3=z^3はx^3+(2y)^3=z^3ですから
> 「x^3+8y^3=z^3は自然数解を持たない」は「x^3+y^3=z^3は自然数解を持たない」と同値な命題です。
> 同値であるだけでなく、同じ証明が通用するはずなんですけどね。
>
> (2y)とyは、違います。
>
> x^3+y^3=z^3と、(2x)^3+(2y)^3=(2z)^3は、同値です。

日高さんは「命題が同値」の意味を知らないんですね。残念です。

941 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:17:02.58 ID:tvtcf4HY.net]
>>893
> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。

(3)のyが無理数のときx,y,zが整数比とならない (少なくともp=2の場合)
(3)のyが有理数のときに整数比となる (少なくともp=2の場合)
の2つはそれぞれ直接証明できるので証明済としてよいとして

(3)のyが無理数のときに整数比とならない (pが奇素数の場合)は直接証明されていない
おまえの証明では
(3)のyが有理数のときに整数比とならない (pが奇素数の場合)
を証明したから証明できたと主張

しかし少なくともp=2の場合は
(3)のyが有理数のときに整数比とならないなら(3)のyが無理数のときに整数比となる
は正しいので結局
(3)のyが無理数のときに整数比とならない (pが奇素数の場合)を直接証明しないと
おまえの主張は正しくないが今のところ
(3)のyが無理数のときに整数比とならない (pが奇素数の場合)は直接証明されていない

942 名前:日高 [2020/11/28(土) 20:26:10.90 ID:0fpuH75L.net]
>898
x^3+y^3=(x+2)^3でx,y,zが整数比となるにはy=2t (tは有理数)と書けることが必要
x^3+y^3=(x+√3)^3でx,y,zが整数比となるにはy=√3*tと書けることが必要

よく、わからないので、教えていただけないでしょうか。

943 名前:日高 [2020/11/28(土) 20:27:58.91 ID:0fpuH75L.net]
>901
> x^3+y^3=z^3と、(2x)^3+(2y)^3=(2z)^3は、同値です。

日高さんは「命題が同値」の意味を知らないんですね。残念です。

教えていただけないでしょうか。



944 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:31:26.71 ID:9zJVD458.net]
>>902 日高

> 日高さんは「命題が同値」の意味を知らないんですね。残念です。
>
> 教えていただけないでしょうか。

ふつうに勉強していれば高等学校1年生ぐらいでわかりますよ。ご自分で勉強なさってください。

945 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:34:57.14 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

> 日高さんは「命題が同値」の意味を知らないんですね。残念です。


  1/3 = 2 ⇒ cosπ=1/2

の真偽すらわからないのだから、期待する方が無理。


こんな糞スレ、さっさと1000まで詰めて終了させよう。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

946 名前:日高 [2020/11/28(土) 20:37:48.58 ID:0fpuH75L.net]
(修正11)
【定理】n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となる。
∴n>2のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

947 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:41:12.03 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

其の夜閨の内に、言有りて言はく、「痛や」といふこと三遍なり。父母聞きて、
相談ひて曰はく、
「未だ効はずして痛むなり」
といひて、忍びて猶し寐ぬ。明くる日晩ク起き、
家母戸を叩キテ、驚かし喚べども答へず。怪しびて開きみれば、唯頭と一つ
の指とを遺し、自余皆?はる。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

948 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:43:16.96 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

女衆参り集ひて、浄水を以て経の御墨の水に加えぬ。……雨を避けて堂に入るに、
堂の裏狭少きが故に、経師と女衆同じ処に居り。爰に経師、婬れの心熾に発り、嬢
ノ背に踞リヲリ。裳を挙げて婚ふ。マラのクボに入るに随ひて、手を携えて倶に死ぬ。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

949 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:45:42.47 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 白き羅の単襲、二藍の、小袿だつものないがしろに着なして、紅の腰ひき
結へる際まで胸あらはに、ばうぞくなるもてなしなり。いと白うをかしげに
つぶつぶと肥えて、そぞろかなる人の、頭つき額つきものあざやかに、まみ、
口つきいと愛敬づき、はなやかなる容貌なり。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

950 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:49:36.16 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 集合 A の各元に対して集合 B の元がただ1つ対応する規則 f が定まっているとき、この対応を A から B への写像といい
  f: A → B
で表す。すなわち
  x ∈ A ⇒ f(x) = y を満たす y ∈ B が存在する

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

951 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:50:57.18 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 私は約10年、内臓疾患の父と認知症の母を看てきました。1番辛い頃、体重は8キロ程減
り、認知症の母の手を引いて入院している父の洗濯物を持って病室に通いました。枕を並
べて寝ている母に「煙のように消えたいね」と言って本気でそう思いました。母が次第に
母で無くなっていく姿を見ながら諦めていく事は生き地獄です。最初の頃は認知症カフェ
を探しました。探す意欲があるうちはまだいいと思います。認知症講座に出向きましたが
途中で居られなくなり退席しました。何でも出て来られる人はまだいいと思います。介護
殺人のニュース。私は介護をする者の地獄の世界が良くわかります。私は一刻も早く介護
する側の救援を望みます。それも、1人でやっている人を癒しの場に引っ張り出してあげて
下さい。お願いします。

悪霊退散!!!
952 名前:r> 悪霊退散!!!
悪霊退散!!!
[]
[ここ壊れてます]

953 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:53:12.90 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

「四人の賢者による形而上的な対話」と言われる弦楽四重奏曲はハイドン・モーツアルト
と続きベートーヴェンによってその可能性を明らかにされました。ベートーヴェンの弦楽
四重奏曲の中でも最もポピュラーな3曲のラズモフスキー四重奏曲の最後を飾るのが今回
ご紹介する第三番ハ長調です。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!



954 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:54:49.02 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

  (A∪B)∩C = (A∩C)∪(B∩C).
  (A∪B)∩C = { x|( (P(x)∨Q(x) ) ∧ R(x) }
       = { x|(P(x)∧R(x) ∨ Q(x)∧R(x) }
       = { x|(P(x)∧R(x) }∪{x|Q(x)∧R(x) }
       = (A∩C)∪(B∩C).

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

955 名前:132人目の素数さん mailto:sage [2020/11/28(土) 20:57:53.11 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 p を素数とし、n を p の倍数でない整数(a と p は互いに素)とするときに、a^(p-1)
p で割った余りは 1 である。つまり、
  n^(p-1)≡1 (mod p)
が成り立つ。これをフェルマーの小定理と呼ぶ。
 この定理はピエール・ド・フェルマーの名を冠するが、フェルマーの他の予想と同じく、
フェルマー自身によって証明が与えられていたことが確認されているわけではない。この
定理に対する証明はゴットフリート・ライプニッツによって初めて与えられた。数論にお
いて、フェルマーの小定理は素数の性質

956 名前:についての定理であり、実用としてもRSA暗号に応
用されている定理である。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!
[]
[ここ壊れてます]

957 名前:132人目の素数さん mailto:sage [2020/11/28(土) 21:00:23.98 ID:LpYp+oBb.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!



 1 個 66 円の柿と 1 個 35 円のミカンを合わせて 3890 円分買った。
このとき、柿とミカンをそれぞれ何個ずつ買ったのか?


 この問題は日高さんも解けるであろう。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

958 名前:132人目の素数さん mailto:sage [2020/11/28(土) 21:39:59.60 ID:tvtcf4HY.net]
>>901
> よく、わからないので、教えていただけないでしょうか。
おまえがスルーしただけで>>813で説明している

814日高2020/11/28(土) 08:46:12.52ID:0fpuH75L
>811
838日高2020/11/28(土) 09:30:40.59ID:0fpuH75L
>812
877日高2020/11/28(土) 11:06:56.72ID:0fpuH75L
>877
879日高2020/11/28(土) 11:26:01.62ID:0fpuH75L
>879

>>900もスルーしているが
900日高2020/11/28(土) 20:26:10.90ID:0fpuH75L
>898
901日高2020/11/28(土) 20:27:58.91ID:0fpuH75L
>901

959 名前:sage mailto:sage [2020/11/28(土) 21:54:38.20 ID:FxJ1a5Mc.net]
悪霊退散ニキは応援しとるぞ
日高という悪霊を退治することで
終了時にポイントが加算される

960 名前:132人目の素数さん mailto:sage [2020/11/28(土) 22:02:47.69 ID:FxJ1a5Mc.net]
んふぅ、私の全てはあなたの物ですっ!ぶちゅー、ちゅばっ!
オチンチン様っ、ブルマ好きの変態王女にオマンコして下さいっ!
お願いします、お願いしますぅ!
んあぁ……言った、言ったわよぉ!んふぅ、
ついに、ついに最低な誓いをしたわよぉ!躾て、躾てぇ!
早くアンジェリカをブルマ好きの変態王女に躾てぇ〜ん!
んは、オチンチン、ブルマに当たってるぅ!来て、来てぇ!
ブルマをぶち破って、思いっきりオチンチン突っ込んでぇ!
むああああぁ〜ん!は、はいってきらぁ!あ、あはぁ!あはぁ、すごいっ!
ブルマが破れてぇ……オチンチンが無理矢理入ってくるぅ!
あ、ああぁん……奥、奥の奥までぇオチンチンはいってきれぇ……
あは、わらひのすべれを……ろかしちゃうっ!
ぬは、ぬほっ!オマンコ、オマンコぉ!
ブルマぁ……ネバネバのヌルヌルでぇ!い、いぐ、いぎまずっ!
いっちゃうっ!いぐぅうううううううぅぅぅ!!!
んはぁ、あ、あはぁ……すごい、すごいわぁ……こんなに凄いのは初めてぇ……
んあ、ブルマ、ブルマぁ……あは、素敵、ブルマぁ素敵ぃ〜ん……
んあ、んああぁあ、あっ、ああぁん!いいわ、いいわぁ!最高に気持ちいいわ!
んふぅ、あ、あっ、子宮に当たってるぅ!
素敵、素敵ぃ!もっと、もっと小突いてぇ!
私を溶かして、もっと溶かしてぇ!ブルマ好きの変態にしてぇ〜ん!
むあああぁ〜ん!今、今ぁ……なった、なったわぁ!
私、完全にブルマの虜になったぁ!
お姫様の全てぇ……完全にブルマに支配されたぁ!

961 名前:132人目の素数さん mailto:sage [2020/11/28(土) 22:04:11.33 ID:FxJ1a5Mc.net]
むぉおおおぉ〜ん!来た、来た、あはぁ、ブルマ好きの変態王女興奮しまくりっ!
妊娠確実っ!子種、子種ぇ!ブルマ姿で妊娠っ!
ぬは、ぬほ、ぬほほほほ!いぐ、いぎまずっ!いっちゃうっ!
ぬほ、ぬは、にょほほほほほっ!
ブルマ好き王女っ!い、いぐぅううううううううぅぅぅ!!!
うは、うあぁ……出てる、出てるぅ……ドピュドピュ子宮に出てるぅ……
んあ、んああぁ……ブルマもネバネバでぇ……
あはぁ、すごいわぁ……凄すぎるぅ〜ん……
あはぁ、ブルマベトベトして気持ちいいわぁ……
私ぃ、このまま一生ヌルヌルのブルマを穿いていたいわぁ……んふぅ……

962 名前:132人目の素数さん [2020/11/29(日) 06:03:24.18 ID:zNWdl1Gr.net]
>>902 「命題が同値」あるいは「同値命題」がわからないって、わからないならネットで調べればいいじゃない。何で自分で調べないの?お爺さんだから?

963 名前:日高 [2020/11/29(日) 06:06:39.87 ID:K1zQVxRc.net]
(修正12)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)はyを有理数とすると、xは無理数となるので、x,y,zは整数比とならない。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。



964 名前:132人目の素数さん [2020/11/29(日) 06:15:02.19 ID:zNWdl1Gr.net]
汚れ証明もどきしか作れない、迷惑かけまくりお爺さん。
次のスレは要らないよ。

965 名前:日高 [2020/11/29(日) 06:20:38.68 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

966 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:36:05.38 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

    次スレ無用

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

967 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:39:15.41 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 やりたければ自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

968 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:41:05.95 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

    ******************** とにかく、次スレ無用 *************************
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

969 名前:日高 [2020/11/29(日) 06:42:59.58 ID:K1zQVxRc.net]
>919
「命題が同値」あるいは「同値命題」がわからないって、わからないならネットで調べればいいじゃない。何で自分で調べないの?お爺さんだから?

ネットで調べました。
私の言っていることは、等式の同値変形でした。

970 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:44:49.97 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 やりたければ自分で掲示板を立ち上げろ。

 角の三等分を証明することも自由だ。

 そこでやる限り、だれも文句は言わない。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

971 名前:日高 [2020/11/29(日) 06:46:10.84 ID:K1zQVxRc.net]
>904
 1/3 = 2 ⇒ cosπ=1/2

の真偽すらわからないのだから、期待する方が無理。

わかりません。教えていただけないでしょうか。

972 名前:日高 [2020/11/29(日) 06:47:58.58 ID:K1zQVxRc.net]
>914
1 個 66 円の柿と 1 個 35 円のミカンを合わせて 3890 円分買った。
このとき、柿とミカンをそれぞれ何個ずつ買ったのか?


 この問題は日高さんも解けるであろう。

わかりません。教えていただけないでしょうか。

973 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:48:26.82 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 やりたければ自分で掲示板を立ち上げろ。
 
 フェルマーの最終定理よりさらに偉大な

  n≧3のとき、♂^n+♀^n=毛^nのx,y,zは自然数とならない。

の証明をすることも自由だ。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!



974 名前:132人目の素数さん [2020/11/29(日) 06:49:02.46 ID:zNWdl1Gr.net]
1.大学教授から間違いを具体的に指摘される
2.すでに間違いの理由を言われているのに、このスレのように「わかりません」「理解できません」を繰り返す
3.大学教授にソッポむかれる
4.大学教授は理由を教えてくれない〜と被害妄想炸裂させて5ちゃんにスレを立てる

こんな感じだろ。

975 名前:132人目の素数さん mailto:sage [2020/11/29(日) 06:51:01.76 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


  1 個 66 円の柿と 1 個 35 円のミカンを合わせて 3890 円分買った。
 このとき、柿とミカンをそれぞれ何個ずつ買ったのか?

 小学生が解く問題だぞ。

 自分のブログを開設して、そこで頑張れ!

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

976 名前:日高 [2020/11/29(日) 06:53:48.65 ID:K1zQVxRc.net]
>924
 やりたければ自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。

この掲示板が、気に入りました。
お尋ねします。この掲示板は、あなたが、立ち上げたのでしょうか?

977 名前:日高 [2020/11/29(日) 06:55:51.15 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

978 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:01:03.82 ID:6YdIk3z6.net]
どの媒体でやろうが、日高が望んでる回答は得られないだろうがな

979 名前:日高 [2020/11/29(日) 07:08:41.73 ID:K1zQVxRc.net]
>935
どの媒体でやろうが、日高が望んでる回答は得られないだろうがな

この、掲示板には、優れた回答者がいます。

980 名前:132人目の素数さん [2020/11/29(日) 07:09:32.87 ID:zNWdl1Gr.net]
日高が望んでいる回答が得られる場所知ってるよ。
精神病棟。
診察する先生は日高が言う事をなんでも「なるほど、なるほど」と否定せずに聞いてくれる。

981 名前:132人目の素数さん [2020/11/29(日) 07:11:50.56 ID:zNWdl1Gr.net]
大学教授の時間を無駄遣いさせ、
5ちゃんの優れた回答者の時間を無駄遣いさせ、
迷惑爺さんは大満足。
迷惑爺さんの存在意義は?
うんこ製造マシーン?

982 名前:日高 [2020/11/29(日) 07:15:49.01 ID:K1zQVxRc.net]
>931
1.大学教授から間違いを具体的に指摘される
2.すでに間違いの理由を言われているのに、このスレのように「わかりません」「理解できません」を繰り返す
3.大学教授にソッポむかれる
4.大学教授は理由を教えてくれない〜と被害妄想炸裂させて5ちゃんにスレを立てる

こんな感じだろ。

被害妄想以外は、大体合っています。

983 名前:132人目の素数さん [2020/11/29(日) 07:16:07.42 ID:zNWdl1Gr.net]
迷惑爺さんも精神病棟に入院して相応の治療費払い経済活動をすれば、少しは社会に貢献している事になるかもな。
治療費払う→病院の収入になる→病院の関係者の収入になる



984 名前:日高 [2020/11/29(日) 07:22:47.17 ID:K1zQVxRc.net]
>935
どの媒体でやろうが、日高が望んでる回答は得られないだろうがな

この、掲示板では、他では得られない優れた回答があります。

985 名前:132人目の素数さん [2020/11/29(日) 07:27:58.91 ID:zNWdl1Gr.net]
>>941 優れた回答得られているのに、何故お礼を言わないの?

986 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:28:42.34 ID:ksAhXYSO.net]
>>939
大体合ってんのかよwwwww

987 名前:日高 [2020/11/29(日) 07:35:27.94 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

988 名前:日高 [2020/11/29(日) 07:37:58.15 ID:K1zQVxRc.net]
>942
優れた回答得られているのに、何故お礼を言わないの?

優れた回答は、まだ、回答の途中だからです。

989 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:43:25.44 ID:XzB0/vD+.net]
>>945
> >942
> 優れた回答得られているのに、何故お礼を言わないの?
>
> 優れた回答は、まだ、回答の途中だからです。

具体的には何番ですか?
回答の途中なのに、なぜ、優れた回答だと思う理由を教えてください。

990 名前:132人目の素数さん [2020/11/29(日) 07:45:17.91 ID:zNWdl1Gr.net]
>>945 優れた回答はどれですか?レス番を全て示して下さい。

991 名前:日高 [2020/11/29(日) 07:48:45.07 ID:K1zQVxRc.net]
>946
具体的には何番ですか?
回答の途中なのに、なぜ、優れた回答だと思う理由を教えてください。

何番かは、探してみて下さい。すぐわかります。
優れた回答だと思う理由は、丁寧だからです。

992 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:48:55.55 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


  これにて終了。

  「

993 名前:優れた回答者」の方々も餌を与えることは慎むように

 ま、楽しんでるんだろうけどwwwwww

  やはり日高センセーは自分のブログを開設して、そこで頑張るべきだ!

  これにて終了。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!
[]
[ここ壊れてます]



994 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:50:41.45 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


  これにて終了。

  もうすぐ終了。

    ******************** とにかく、次スレ無用 *************************
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

  これにて終了。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

995 名前:日高 [2020/11/29(日) 07:52:20.00 ID:K1zQVxRc.net]
>947
優れた回答はどれですか?レス番を全て示して下さい。

何番かは、探してみて下さい。すぐわかります。

996 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:52:32.89 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


  これにて終了。

  あと50で終了。

  此の世のなごり夜もなごり

   ******************** とにかく、次スレ無用 *************************
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

  此の世のなごり夜もなごり


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

997 名前:132人目の素数さん mailto:sage [2020/11/29(日) 07:57:54.49 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 もう、餌(回答)を与えないこと!


 まもなく終了!

 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

 やりたければ自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。

    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

998 名前:日高 [2020/11/29(日) 07:59:00.29 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

999 名前:132人目の素数さん [2020/11/29(日) 07:59:47.12 ID:zNWdl1Gr.net]
日高の数学的思想の優れた回答は「丁寧」な回答だそうですw
自分自身は丁寧じゃないのに、他者には丁寧を求めるw 人間として間違ってますよw

1000 名前:日高 [2020/11/29(日) 08:01:43.80 ID:K1zQVxRc.net]
>953
 やりたければ自分で掲示板を立ち上げろ。
 ツィッターやブログでもいい。いずれも無料だ。
 そこでやる限り、だれも文句は言わない。
    次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用 次スレ無用

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?

1001 名前:132人目の素数さん [2020/11/29(日) 08:06:58.00 ID:WaqC3TVA.net]
フェルマーの最終定理の証明を解読するスレ
https://wc2014.5ch.net/test/read.cgi/math/1284766511/189-193
189 :hidaka7:2011/10/04(火) 14:13:48.36
簡単な方法を見つけました。
kokaji222 を検索してください。
191 :hidaka7:2011/10/06(木) 07:32:28.93
フェルマー簡単証明を検索してください、

TODO
> 自分のブログを開設して
DONE
kokaji222.blog.f
c2.com/

https://twitter.com/hidaka7
注意: このアカウントは一時的に制限されています
このアカウントは不審な行為が確認されています。
(deleted an unsolicited ad)

1002 名前:132人目の素数さん [2020/11/29(日) 08:10:55.58 ID:zNWdl1Gr.net]
>>956
立ち去れという主張に立ち上げた、立ち上げないは関係ありません。
ただ居座るのは立ち上げた者に権利があります。
だからあなたはあなたの掲示板を立ち上げ居座ればいい。

1003 名前:日高 [2020/11/29(日) 08:22:03.23 ID:K1zQVxRc.net]
>955
日高の数学的思想の優れた回答は「丁寧」な回答だそうですw
自分自身は丁寧じゃないのに、他者には丁寧を求めるw 人間として間違ってますよw

「丁寧」な回答とは、文の長さでは、ありません。



1004 名前:132人目の素数さん [2020/11/29(日) 08:22:35.00 ID:zNWdl1Gr.net]
人に迷惑かけて大満足の迷惑爺さんに立ち去れというのは正当な主張。
一方、人に迷惑かけて、自分が立ち上げたわけでもないのに居座る迷惑爺さんに全く正当性は無い。

1005 名前:日高 [2020/11/29(日) 08:28:02.85 ID:K1zQVxRc.net]
>958
立ち去れという主張に立ち上げた、立ち上げないは関係ありません。
ただ居座るのは立ち上げた者に権利があります。
だからあなたはあなたの掲示板を立ち上げ居座ればいい。

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、この掲示板の、管理人なのでしょうか?

1006 名前:132人目の素数さん [2020/11/29(日) 08:29:57.51 ID:zNWdl1Gr.net]
迷惑爺さん。立ち去れ。

1007 名前:日高 [2020/11/29(日) 08:38:11.80 ID:K1zQVxRc.net]
>960
人に迷惑かけて大満足の迷惑爺さんに立ち去れというのは正当な主張。

どこで、誰に、迷惑をかけたのでしょうか?

1008 名前:日高 [2020/11/29(日) 08:39:10.41 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

1009 名前:132人目の素数さん mailto:sage [2020/11/29(日) 08:41:25.04 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 まもなく終了! 次スレ無用!
 まもなく終了! 次スレ無用!
 まもなく終了! 次スレ無用!


 やりたければ自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。

 どうしてもここの掲示板でやりたければ、お笑い系あたりの掲示板に行け。

 まもなく終了! 次スレ無用!
 まもなく終了! 次スレ無用!
 まもなく終了! 次スレ無用!
 


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1010 名前:日高 [2020/11/29(日) 08:49:09.12 ID:K1zQVxRc.net]
>965
どうしてもここの掲示板でやりたければ、お笑い系あたりの掲示板に行け。

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、この掲示板の、管理人なのでしょうか?

1011 名前:132人目の素数さん [2020/11/29(日) 08:56:43.62 ID:zNWdl1Gr.net]
迷惑爺さんに数学板からの立ち退きを要求します。

1012 名前:日高 [2020/11/29(日) 09:00:57.27 ID:K1zQVxRc.net]
>967
迷惑爺さんに数学板からの立ち退きを要求します。

この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、この掲示板の、管理人なのでしょうか?

1013 名前:132人目の素数さん [2020/11/29(日) 09:25:14.46 ID:a9cXhruI.net]
>>896
> (3)のyが無理数のとき、x,y,zが整数比となるならば、(3)のyが有理数のときに整数比となります。
これを言い換えると
「(x,y,z)=(sw,tw,uw)が方程式(3)を満たすとき、
(x,y,z)=(s,t,u)も方程式(3)を満たす」
ということでいいですか?
>はい。

次に進めます。
>>880で確認した通り、方程式(3)において
変数(x,y,z)が満たすべき等式は
「x^n +y^n=z^n」と「z-x= n^{1/(n-1)}」
の両方です。

すると
「(x,y,z)=(sw,tw,uw)が方程式(3)を満たすとき、
(x,y,z)=(s,t,u)も方程式(3)を満たす」

「(sw)^n +(tw)^n=(uw)^n とuw-sw=n^{1/(n-1)}」の両方が成立するとき「s^n +t^n=u^n とu-s=n^{1/(n-1)}」の両方が成立する。
と書けます。

ここまでご理解いただけましたか?
はい/いいえ でお答えください。
質問があればしてください。



1014 名前:132人目の素数さん mailto:sage [2020/11/29(日) 09:26:36.03 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 やりたければ自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1015 名前:日高 [2020/11/29(日) 09:54:10.22 ID:K1zQVxRc.net]
>969
「(sw)^n +(tw)^n=(uw)^n とuw-sw=n^{1/(n-1)}」の両方が成立するとき

は、「(sw)^n +(tw)^n=(uw)^n とuw-sw=(n^{1/(n-1)})w」の両方が成立するとき
ではないでしょうか?

1016 名前:日高 [2020/11/29(日) 09:56:51.79 ID:K1zQVxRc.net]
>970
 やりたければ自分で掲示板を立ち上げろ。
 ツィッターやブログでもいい。いずれも無料だ。
 そこでやる限り、だれも文句は言わない。

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、この掲示板の、管理人なのでしょうか?

1017 名前:132人目の素数さん mailto:sage [2020/11/29(日) 10:15:09.87 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!


 ここは数学に関する掲示板である。

 数学以外のテーマなら他の掲示板に行くか、自分で掲示板を立ち上げろ。

 ツィッターやブログでもいい。いずれも無料だ。

 そこでやる限り、だれも文句は言わない。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1018 名前:日高 [2020/11/29(日) 10:25:33.87 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

1019 名前:日高 [2020/11/29(日) 10:28:33.98 ID:K1zQVxRc.net]
>973
 ここは数学に関する掲示板である。
 数学以外のテーマなら他の掲示板に行くか、自分で掲示板を立ち上げろ。
 ツィッターやブログでもいい。いずれも無料だ。
 そこでやる限り、だれも文句は言わない。

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、あなたは、この掲示板の、管理人なのでしょうか?

1020 名前:132人目の素数さん mailto:sage [2020/11/29(日) 10:32:12.81 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

function BinToDec(const S: string):string;
var
 i,x,v,n: Integer;
begin
 Result := '';
 x := 0;
 n := Length(S);
 for i := 1 to n do
 begin
  v := Ord(S[i]) - Ord('0');
  x := 2*x+v;
 end;
 Result := IntToStr(x);
end;


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1021 名前:132人目の素数さん mailto:sage [2020/11/29(日) 10:33:19.48 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

(1)BWV 846 前奏曲 - 4声のフーガ ハ長調 (C)
(2)BWV 847 前奏曲 - 3声のフーガ ハ短調 (C)
(3)BWV 848 前奏曲 - 3声のフーガ 嬰ハ長調 (C♯)
(4)BWV 849 前奏曲 - 5声のフーガ 嬰ハ短調 (C♯)
(5)BWV 850 前奏曲 - 4声のフーガ ニ長調 (D)
(6)BWV 851 前奏曲 - 3声のフーガ ニ短調 (D)
(7)BWV 852 前奏曲 - 3声のフーガ 変ホ長調 (E♭)
(8)BWV 853 前奏曲 - 3声のフーガ 嬰ニ短調 (D♯)
(9)BWV 854 前奏曲 - 3声のフーガ ホ長調 (E)
(10)BWV 855 前奏曲 - 2声のフーガ ホ短調 (E)
(11)BWV 856 前奏曲 - 3声のフーガ ヘ長調 (F)
(12)BWV 857 前奏曲 - 4声のフーガ ヘ短調 (F)
(13)BWV 858 前奏曲 - 3声のフーガ 嬰ヘ長調 (F♯)
(14)BWV 859 前奏曲 - 4声のフーガ 嬰ヘ短調 (F♯)
(15)BWV 860 前奏曲 - 3声のフーガ ト長調 (G)
(16)BWV 861 前奏曲 - 4声のフーガ ト短調 (G)
(17)BWV 862 前奏曲 - 4声のフーガ 変イ長調 (A♭)
(18)BWV 863 前奏曲 - 4声のフーガ 嬰ト短調 (G♯)
(19)BWV 864 前奏曲 - 3声のフーガ イ長調 (A)
(20)BWV 865 前奏曲 - 4声のフーガ イ短調 (A)
(21)BWV 866 前奏曲 - 3声のフーガ 変ロ長調 (B♭)
(22)BWV 867 前奏曲 - 5声のフーガ 変ロ短調 (B♭)
(23)BWV 868 前奏曲 - 4声のフーガ ロ長調 (B)
(24)BWV 869 前奏曲 - 4声のフーガ ロ短調 (B)


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1022 名前:132人目の素数さん mailto:sage [2020/11/29(日) 10:34:32.00 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 為替スワップ(英: foreign exchange swap または forex swap または FX swap)とは、
為替取引の一種。たとえば、通貨A(例:円)を担保に入れて通貨B(例:ドル)を借り、一
定期間後に通貨Bを返すような為替取引。
 より専門的には、為替直物取引と為替先渡取引を逆方向で同時に行う取引とも言える。
通貨スワップとは2つの通貨を用いる取引という点で似るが、別物である。
 たとえば、ユーロ圏の金融機関が直物の米ドル買い・ユーロ売り、先渡の米ドル売り・
ユーロ買いという為替スワップ取引を行うことを考える。このような取引を用いれば、
(相対的に)調達が容易なユーロさえ手許に用意すれば、米ドル資金を一定期間調達する
ことができると言える。
 またこうした取引は、上記例で言えば自国通貨のユーロを担保に米ドル資金を調達する
有担保取引としての性格を有していることから、米ドル資金の無担保調達が制限されてい
るような金融機関でも用いやすい。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1023 名前:日高 [2020/11/29(日) 10:38:35.56 ID:K1zQVxRc.net]
ID:J/qZLKS7さんへ

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、あなたは、この掲示板の、管理人なのでしょうか?



1024 名前:132人目の素数さん mailto:sage [2020/11/29(日) 10:38:44.10 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

 債券の帝王と呼ばれた伝説的トレーダーのジョン・メリウェザー、
ノーベル経済学賞受賞者のロバート・マートンとマイロン・ショールズ
らの当時、金融界のスーパースターが 1993 年に作ったヘッジファンドは
結局、猿が運用した実績と同等であった。


悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1025 名前:日高 [2020/11/29(日) 11:21:40.91 ID:K1zQVxRc.net]
修正13の例

(4)を、z=5、x=2とする。
(4)のx,yは、(3)のx,yの定数倍なので、(4)のx,yも整数比とならない。
よって、(4)のyは無理数となる。

1026 名前:132人目の素数さん [2020/11/29(日) 14:09:03.50 ID:31YxRVMD.net]
スレの新参者だけども、
どうしてここまで、>>1の「証明」を論破できないで続いているわけ?
それとも立証できている(まさかね。)?

1027 名前:132人目の素数さん mailto:sage [2020/11/29(日) 14:16:36.52 ID:J/qZLKS7.net]
> どうしてここまで、>>1の「証明」を論破できないで続いているわけ?

>>928
>>929

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1028 名前:日高 [2020/11/29(日) 14:23:12.83 ID:K1zQVxRc.net]
>982
スレの新参者だけども、
どうしてここまで、>>1の「証明」を論破できないで続いているわけ?
それとも立証できている(まさかね。)?

ご指摘お願いします。

1029 名前:132人目の素数さん mailto:sage [2020/11/29(日) 14:28:48.68 ID:Xj+UulnE.net]
スレ主は論破されていることを頑なに認めないからな

1030 名前:日高 [2020/11/29(日) 14:29:33.29 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

1031 名前:日高 [2020/11/29(日) 14:32:25.40 ID:K1zQVxRc.net]
>985
スレ主は論破されていることを頑なに認めないからな

ご指摘お願いします。

1032 名前:132人目の素数さん mailto:sage [2020/11/29(日) 14:38:53.15 ID:bCEagm4S.net]
>>979
> 再度お尋ねします。
> この掲示板は、あなたが、立ち上げたのでしょうか?
> それとも、あなたは、この掲示板の、管理人なのでしょうか?

この掲示板は日高が立ち上げたのでしょうか?
日高が管理人なのでしょうか?

そうでないなら、なんで日高が権利を主張できるのでしょうか?

1033 名前:132人目の素数さん [2020/11/29(日) 14:48:31.24 ID:zNWdl1Gr.net]
日高はこのスレだけで100回は論破されてるよ。



1034 名前:日高 [2020/11/29(日) 14:49:49.99 ID:K1zQVxRc.net]
>988
この掲示板は日高が立ち上げたのでしょうか?
日高が管理人なのでしょうか?

そうでないなら、なんで日高が権利を主張できるのでしょうか?

私が、どこで、どのような権利を主張したのでしょうか?

1035 名前:日高 [2020/11/29(日) 14:52:21.17 ID:K1zQVxRc.net]
>989
日高はこのスレだけで100回は論破されてるよ。

何番で、論破されたのでしょうか?

1036 名前:ID:1lEWVa2s mailto:sage [2020/11/29(日) 14:57:13.38 ID:yIhlNpNH.net]
>>986
今更だが(1)まで理解できる。
僕の方が早くその恒等式の組み方見付けた。
軍事機密スレ後でしょきみ。
(2)以降は理解するのに未だ時間掛かる
パソコン表記読みづらい。
真か偽かで証明したか反証したかは待て。

1037 名前:ID:1lEWVa2s mailto:sage [2020/11/29(日) 14:58:31.57 ID:yIhlNpNH.net]
{}これ使われると全く頭に入ってこん。

1038 名前:132人目の素数さん [2020/11/29(日) 15:00:15.78 ID:zNWdl1Gr.net]
そもそも日高は数学のスの字も知らないオッさんだった。
ある日、日高は数百年未解決だったフェルマーの定理が証明されたことを耳にする。
欲の塊の日高は「この勝ち馬に乗らない手はない」「高度成長期とバブル期に培ったゴリ押しとトボケ演技を使えば名声と富を手にできる」と思った。
そして迷惑かけまくりの旅が始まったのである。

1039 名前:ID:1lEWVa2s mailto:sage [2020/11/29(日) 15:01:33.61 ID:yIhlNpNH.net]
明日仕事だから寝る。さいなら。

1040 名前:日高 [2020/11/29(日) 15:10:01.13 ID:K1zQVxRc.net]
(修正13)
【定理】n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。
【証明】x^n+y^n=z^nを、z=x+rとおいてx^n+y^n=(x+r)^n…(1)とする。
(1)をr^(n-1){(y/r)^n-1}=an{x^(n-1)+…+r^(n-2)x}(1/a)…(2)と変形する。
(2)はa=1、r^(n-1)=nのとき、x^n+y^n=(x+n^{1/(n-1)})^n…(3)となる。
(2)はa=1以外、r^(n-1)=anのとき、x^n+y^n=(x+(an)^{1/(n-1)})^n…(4)となる。
(3)のx,y,zはyを有理数とすると、xは無理数となる。
(4)のx,y,zは(3)のx,y,zのa^{1/(n-1)}倍となるので、zを有理数とすると、yは無理数となる。
∴n≧3のとき、x^n+y^n=z^nのx,y,zは自然数とならない。

1041 名前:132人目の素数さん mailto:sage [2020/11/29(日) 15:12:32.48 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

糞スレ終了
二度と建てるな。

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1042 名前:132人目の素数さん mailto:sage [2020/11/29(日) 15:13:47.04 ID:J/qZLKS7.net]
悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

エロ板かハングル板または支那板でやれ

悪霊退散!!!
悪霊退散!!!
悪霊退散!!!

1043 名前:日高 [2020/11/29(日) 15:13:59.08 ID:K1zQVxRc.net]
修正13の例

(4)を、z=5、x=2とする。
(4)のx,yは、(3)のx,yの定数倍なので、(4)のx,yも整数比とならない。
よって、(4)のyは無理数となる。



1044 名前:日高 [2020/11/29(日) 15:16:26.31 ID:K1zQVxRc.net]
ID:J/qZLKS7さんへ

再度お尋ねします。
この掲示板は、あなたが、立ち上げたのでしょうか?
それとも、あなたは、この掲示板の、管理人なのでしょうか?

1045 名前:132人目の素数さん mailto:sage [2020/11/29(日) 15:17:04.28 ID:bCEagm4S.net]
>>990
> >988
> この掲示板は日高が立ち上げたのでしょうか?
> 日高が管理人なのでしょうか?
>
> そうでないなら、なんで日高が権利を主張できるのでしょうか?
>
> 私が、どこで、どのような権利を主張したのでしょうか?
自分の書き込みすら理解できないということですか。
迷惑ですね。

1046 名前:1001 [Over 1000 Thread.net]
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 15日 5時間 57分 13秒

1047 名前:過去ログ ★ [[過去ログ]]
■ このスレッドは過去ログ倉庫に格納されています






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<502KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef