[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 19:30 / Filesize : 341 KB / Number-of Response : 1050
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校数学の質問スレPart407



536 名前:132人目の素数さん mailto:sage [2020/09/07(月) 16:22:13.20 ID:NYVZRhq2.net]
>>500
すでに>>494さんが指摘されているが、101,1181,3001,8501,394201等の数字は、
3^(2 5)+1や、3^(2 5^2)+1、3^(2 5^3)+1などの素因数。

FactorInteger[3^(2 5)+1] = {{2, 1}, {5, 2}, {1181, 1}}
FactorInteger[3^(2 5^2)+1] = {{2, 1}, {5, 3}, {101, 1}, {1181, 1}, {394201, 1}, {61070817601, 1}}
FactorInteger[3^(2 5^3)+1] = {{2, 1}, {5, 4}, {101, 1}, {1181, 1}, {3001, 1}, {8501, 1}, {394201, 1},
{61070817601, 1}, {124254307278001, 1},{16758435627223658802353128980509765910556138571016687543698189838663420001, 1}}

逆に、3^(2 5^3)+1の素因数に、124254307278001があることを知っていると、a=124254307278001*250=31063576819500250 として
3^a+1≡0 mod a 等が判る。

a=124254307278001*250;PowerMod[3,a,a]-a = -1
b=16758435627223658802353128980509765910556138571016687543698189838663420001*250;PowerMod[3,b,b]-b = -1






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<341KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef