[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/12 01:13 / Filesize : 430 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 カントル 超限集合論他 3



99 名前:現代数学の系譜 雑談 mailto:sage [2020/08/02(日) 16:49:54.11 ID:NrBYtRST.net]
>>90 補足

時枝記事(>>7 ご参照)では
決定番号dなるものを使う

1.決定番号dの範囲は、有限では収まらない。1〜∞ を渡る
2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの
3.もし、決定番号dが、正規分布のように、dの大きなところで、早く減衰して、d→∞ で その頻度が0になる場合は、正則分布になり、確率計算は正当化できる
4.一方、時枝記事の決定番号dは、減衰しない。だから、非正則分布になり、確率測度として正当化できず、確率計算に使えない(∵確率の和を1に出来ないなど)
 卑近な例では、>>90で説明したような、試験の点数で 点数の上限がなく、いくらでも高得点者が居るような場合
 ある有限のD点を基準として、それより点数に低い人は何パーセントと言っても、いくらでも高得点者が居るような場合は、確率計算に乗りませんね
5.それを、数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです

>>28より再録)
https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
(抜粋)
answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏
・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
(引用終り)

Math Dr. Tony Huynh氏も分かっている
”If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.”

つまり
”If it were somehow possible to put a 'uniform' measure on the space of all outcomes”が実現できれば なのだが
'uniform' measure=一様分布 (「一様分布」は、>>67の非正則事前分布の説明に出てくるね)

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<430KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef