[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/12 01:13 / Filesize : 430 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 カントル 超限集合論他 3



9 名前:現代数学の系譜 雑談 mailto:sage [2020/07/18(土) 10:19:03.66 ID:ywyns0bH.net]
>>7
前スレより
https://rio2016.5ch.net/test/read.cgi/math/1576852086/878
「反例の存在証明」
<まず確認>
1.箱への数の入れ方は、「どんな実数を入れるかはまったく自由」である
2.したがって、”独立同分布である i.i.d. IID”(下記)で、箱に数を入れることは可能
3.時枝記事の”勝つ戦略”なるものは
 「ある1つの箱を残して、他の箱を全て開けることを許せば、
 その1つの箱の実数を 確率99%(あるいは確率1-ε(εは任意に小さく取れる))で的中できる」
 ということだった
<反例証明>
1.”独立同分布 i.i.d. IID”で、箱に数を入れるとする
 (可算無限個の確率変数を扱うことは、大学レベルの確率論&確率過程論の射程内である)
2.IIDとして、サイコロで箱に数を入れれば、的中確率は1/6である
 どの箱も例外無し。どの1つの箱も 確率99%にならないので、反例となる
3.区間[0,1]の一様分布から、任意の実数を選んで IIDで 数を入れる
 ルベーグ測度では区間[0,1]の1点r( 0 =< r =< 1 ) の測度は0(∵零集合)で、的中確率0
 これも、反例となる
QED
(補足:”独立”だから、問題の箱以外を開けても、問題の箱の確率には 何ら影響しない。サイコロなら1/6、区間[0,1]の一様分布内の1点rなら的中確率0)
w(^^;

この「反例証明」が分からないのは、小学生レベルの”数学落ちこぼれ”ww

(参考)
https://www.practmath.com/iid/
実用的な数学を
2019年6月20日 投稿者: TAKAN
独立同分布である i.i.d. IID
(抜粋)
|| 同じ分布のデータは互いに不干渉だよ
これは「確率変数を別々に扱えるよ」という『仮定』です。
これが仮定されていると、非常に計算がしやすくなります。
相関を考えなくて良いので、共分散などを使う必要がありません。
なにせ条件付き確率の発想から分かる通り、独立性は特別なものです。
といっても、そうそうおかしなことにはならないわけですけど。
(引用終り)






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<430KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef