[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/12 01:13 / Filesize : 430 KB / Number-of Response : 604
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 カントル 超限集合論他 3



539 名前:… の標準的な定義は 0.9, 0.99, 0.999, … なる数列の極限であるが、それと異なる定義として例えばテレンス・タオが超極限と呼ぶ数列 0.9, 0.99, 0.999, … の超冪構成(英語版)に関する同値類 [(0.9, 0.99, 0.999, …)] は 1 より無限小だけ小さい
イアン・スチュアートはこの解釈を、「0.999… は 1 よりも『ほんの少しだけ小さい』」という直観を厳密に正当化する「全く合理的な」方法として特徴づけた
(引用終り)

さて、その上で、上記を有限小数環で説明しよう(高等数学とはあんまり関係ないが)
1.有限小数環を構成するやり方はいくらでもあるが、分かり易く、多項式環から始める
(参考:https://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F%E7%92%B0 )
 参考より ”注意すべき点として、多項式には項が有限個しかないこと -つまり十分大きな k(ここでは k > m)に関する係数 pk がすべて零であるということ- は、暗黙の了解である”とある
2.普通、係数はある体Kだが、いま都合上整数Zを係数とする
 そして、Xに1/10=0.1を代入する。例えば、p3X^3+p2X2+p1X1+P0→p3*10^-3 +p2*10^-2+p1*10^-1+p0となる
 定数項p0があるので、全ての整数を尽くす。また、有限小数を全て尽くすことも容易に分かる
 環としての和と積で閉じていることも、同様
 この有限小数環をZ[10^-1]とする
3.Z[10^-1]は、有理数Qから10進の循環小数(=無限小数)を除いた集合であることも、容易に分かる
 よって、1/3=0.333・・・という循環小数は、K[10^-1]には含まれない
4.よって、3*(1/3)=3*0.333・・・=0.999・・・=1
 は、Z[10^-1]の中では実現できないが、任意の精度の近似が可能
 この結果は、他の数学の成果と何ら矛盾しない
5.矛盾するような感覚になるのは、おそらくは
 古代の人類が、有理数Qの分数から数学を発展させて来た歴史的なものによるのだろう
以上
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<430KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef