- 353 名前:132人目の素数さん [2021/11/13(土) 12:39:12.73 ID:OtqEOAj/.net]
- >>322 補足
全順序列 0,1,・・,n,・・,ω で、n→<n< に変えて 0,1,・・ <n< ・・,ω としても、なんの問題もない ∵自然数Nは、全順序列だから 同様に、実数の数直線上のr∈Rで −−−−−− r −−−−−−− ここで、r→<r< に変えて −−−−−−<r<−−−−−−− としても、なんの問題もない ∵実数Rは、全順序列だから 要するに、r∈Rを使って、 数直線を、1点r自身、r未満、r超え の3つの部分に分けられるってことだ ”<r”に具体的な左の数は必要なく ”r<”に具体的な右の数は必要ない 数直線上には、1点rの左右の数は必要ない よって、 0,1,・・ <n< ・・,ω で、ω→<ω に変えて 0,1,・・ <n< ・・ <ω としても,<ωは全ての自然数より大、言い換えれば、全ての自然数はω未満 と解釈すれば良い それで 何の問題もない
|

|