- 318 名前:132人目の素数さん [2021/11/08(月) 07:39:24.05 ID:CF7SYpmS.net]
- >>293 補足の補足
下記より ”実数直線は標準的な大小関係 < による順序に関して線型連続体である” ”、実数直線は 大小関係 < に関して全順序集合” それは、実数R自身が持つ性質でもある ”<”を狭く解釈すると、実数Rの全順を考えるときには、そのやり方は全く不便だよ https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E7%9B%B4%E7%B7%9A 実数直線 https://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Real_number_line.svg/700px-Real_number_line.svg.png 実数直線の模式図 線型連続体 実数直線は標準的な大小関係 < による順序に関して線型連続体である。具体的に言えば、実数直線は 大小関係 < に関して全順序集合であり、またこの順序は稠密で、上限性質を持つ。 上記の性質に加えて、実数直線は最大元も最小元も持たない。また、部分集合として可算で稠密なもの(要するに有理数の全体)を含む。可算稠密部分集合を持ち、最大元も最小元も持たないような任意の線型連続体は実数直線に順序同型であるという定理がある。 実数直線は可算鎖条件 (ccc): 「R における互いに交わらない空でない開区間からなる任意の族は可算である」 を満足する。順序集合論においてよく知られるススリンの問題は「最大元も最小元も持たず可算鎖条件を満足する線型連続体は R に順序同型でなければならないか」ということを問うものである。そしてこの問題の主張は、集合論で標準的な公理系として用いられる ZFC から独立であることが知られている。 位相的な性質 実数直線上には標準的に二つの互いに同値な方法で位相を入れることができる。一つは、実数直線が全順序集合であることを用いて順序位相を入れる方法。もう一つは先に述べた距離からくる内在的な距離位相を入れる方法である。R 上のこれら二つは全く同じ位相を定める。位相空間としては、実数直線は開区間 (0, 1) に同相である。 https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Real_projective_line.svg/300px-Real_projective_line.svg.png 実数直線にただひとつの無限遠点を加えてコンパクト化できる。 実数直線は明らかに一次元の位相多様体である。同相の違いを除いて、境界のない一次元多様体は二種類しかなく、実数直線 R1 のほかは円周 S1 である。
|

|