[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 19:24 / Filesize : 810 KB / Number-of Response : 1122
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

IUTを読むための用語集資料集スレ



99 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [2020/07/10(金) 06:11:34 ID:F8J9moxS.net]
転載
Inter-universal geometry と ABC予想 (応援スレ) 48
https://rio2016.5ch.net/test/read.cgi/math/1592119272/337
337 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/07/09(木) 22:49:15.99 ID:nrcdZVDh [2/3]
>>326
>『ABC予想入門』には
>楕円曲線y^2=x(x-a)(x+b)を構築し、そのような楕円曲線が「比較的少ない」ことを見出す
>とはっきり書いてあるんだけどね
>それがIUT理論にどうつながるのかが分からん

えーと、まず
その話は、『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
のP200にある話だよね

そこには、前段があって
a+b=c で互いに素な (a,b,c) という制約があって、
そういう解は意外の少ないとある

つまり、
a^n + b^n = c^n
という方程式で

n >=3 の場合が、フェルマー予想
n=2 の場合が、ピタゴラスで直角三角形
n=1の場合が、ABC予想

で、 n >=3 の場合(フェルマー予想)で
フライの楕円曲線
y^2=x(x-a^n)(x+ b^n)
を考えると、谷山-志村予想から、a^n + b^n = c^n なる解なしが分かる

で、 n =1 の場合(ABC予想)で
フライの楕円曲線の類似
y^2=x(x-a)(x+ b)
を考えると、スピロ予想から、”a+b=c で互いに素なる解に制約あり”(少ない)が分かる

そういうことが
『ABC予想入門』(黒川、小山 PHPサイエンス・ワールド新書 2013)
P197以降に書いてあるみたい






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<810KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef