- 71 名前:現代数学の系譜 雑談 [2020/06/29(月) 07:29:59.79 ID:zK2xtwvj.net]
- 上半平面 H は、良く出てくる
双曲幾何と関連しています https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AF%E3%83%B3%E3%82%AB%E3%83%AC%E3%81%AE%E4%B8%8A%E5%8D%8A%E5%B9%B3%E9%9D%A2%E3%83%A2%E3%83%87%E3%83%AB ポワンカレの上半平面モデル 半平面模型の星型正七角形による敷詰 https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Poincare_halfplane_heptagonal_hb.svg/400px-Poincare_halfplane_heptagonal_hb.svg.png 非ユークリッド幾何学におけるポワンカレ半平面模型(はんへいめんもけい、英: Poincare half-plane model)は、上半平面(以下 H と記す)にポワンカレ計量と呼ばれる計量をあわせて考えたもので、二次元双曲幾何学のモデルを形成する。 名称はアンリ・ポワンカレに因むものだが、そもそもはベルトラミが、クライン模型・(リーマンによる)ポワンカレ円板模型とともに、双曲幾何学がユークリッド幾何学に無矛盾等価(英語版)であることを示すために用いたものである。円板模型と半平面模型とは共形写像のもとで同型である。 目次 1 対称性の群 2 等距対称性 3 測地線 対称性の群 射影線型群 PGL(2,C) はリーマン球面に一次分数変換で作用する。この群の部分群で上半平面 H を H 自身の上に移すものは、すべての係数が実数であるような変換全体の成す群 PSL(2, R) で、その作用は上半平面上推移的かつ等距ゆえ、上半平面はこの作用に関する等質空間となる。 つづく
|

|