[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 19:24 / Filesize : 810 KB / Number-of Response : 1122
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

IUTを読むための用語集資料集スレ



67 名前:現代数学の系譜 雑談 [2020/06/28(日) 23:08:29.13 ID:bfBvt+85.net]
メモ貼る
大学のテキストなどが望ましいが、とりあえず

tkenichi.hatenablog.jp/entry/2014/01/12/152444
tkenichi の日記
2014-01-12
穴あき曲面の展開

閉曲面(いわゆる境界のないコンパクトな曲面)の分類はよく知られていて、曲面に切れ目を入れて展開した多角形を張り合わせることで表現することができる。向き付け可能な場合は球面またはg個のトーラスの連結和として表すことができ、多角形の張り合わせで表現する場合は、以下のようになる。

向き付け不可能な場合は、射影空間のk個の連結和としてあらわすことができる。多角形の張り合わせで表現する場合は、以下のようになる。

さて、閉曲面から開円板を取り除いた境界つきの曲面の多角形表現を考えよう。ここでは、展開した多角形の頂点(張り合わせたときに曲面上の1点になる)を含むように開円板をとる。すなわち、開円板の境界が展開した多角形のすべての辺と交叉する場合を考える。向き付け可能な場合は以下のようになる。

向き付け不可能な場合は以下のようになる。

曲面 オイラー数 多角形展開した時の辺の個数
g 個のトーラスの連結和 2-2g 4g
k 個のトーラスの連結和 2-k 2k
g 個のトーラスの連結和から開円板を除いたもの 1-2g 8g
k 個のトーラスの連結和から開円板を除いたもの 1-k 4k
拡張された三角形分割の個数を数えるには、境界つきの曲面の多角形表現で、境界上にすべての頂点があるような場合で、展開した多角形を平面上の三角形分割すればよい。ただし、重複するものが現れるので、それを除く必要がある。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<810KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef