[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 19:24 / Filesize : 810 KB / Number-of Response : 1122
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

IUTを読むための用語集資料集スレ



40 名前:現代数学の系譜 雑談 mailto:sage [2020/06/24(水) 23:19:10.61 ID:b5EBywaq.net]
メモ

Inter-universal geometry と ABC予想 (応援スレ) 48
https://rio2016.5ch.net/test/read.cgi/math/1592119272/
61 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/18(木) 17:17:22.36 ID:LPUPFt8f [2/4]
>>57 補足

https://en.wikipedia.org/wiki/Szpiro%27s_conjecture
Szpiro's conjecture

Modified Szpiro conjecture

The modified Szpiro conjecture states that: given ε > 0,
there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm),
we have
max{|c_4|^3 , |c_6|^2 } =< C( ε )・ f^{6+ε}

https://en.wikipedia.org/wiki/Tate%27s_algorithm
Tate's algorithm

In the theory of elliptic curves, Tate's algorithm takes as input an integral model of an elliptic curve E over Q }Q , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index

cp=[E(Q p):E^0(Q p)],
where E^0(Q p) is the group of Q p}Q p-points whose reduction mod p is a non-singular point.
Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal.

Tate's algorithm also gives the structure of the singular fibers given by the Kodaira symbol or Neron symbol, for which, see elliptic surfaces: in turn this determines the exponent fp of the conductor E.

Tate's algorithm can be greatly simplified if the characteristic of the residue class field is not 2 or 3; in this case the type and c and f can be read off from the valuations of j and Δ (defined below).

Tate's algorithm was introduced by John Tate (1975) as an improvement of the description of the Neron model of an elliptic curve by Neron (1964).

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<810KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef