[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 19:24 / Filesize : 810 KB / Number-of Response : 1122
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

IUTを読むための用語集資料集スレ



109 名前:現代数学の系譜 雑談 [2020/07/11(土) 19:45:09.94 ID:PRf3fy9U.net]
楕円曲線、判別式 Δ:=-16(4a2-27b2)
www.suri-joshi.jp/enjoy/rational_points_of_elliptic_curve/
数理女子
楕円曲線の有理点

楕円曲線と有理点
Q
上定義された楕円曲線とは、
a1, a2,…,a6∈Q
に対し、
y2+a1xy+a3y=x3+a2x2+a4x+a6
で表される曲線です。ただし2次曲線の場合と同様、退化する場合は除いておきます。 この曲線は
y2=x3+ax+b,(a,b∈Q)
という形の標準形へ持って行くことができることが知られています。このとき、 退化するのは「右辺=0」という方程式が重根を持つ場合、
つまり判別式
Δ:=-16(4a2-27b2)が0
となるときです。上の方程式で表される楕円曲線を
Eと書き、 その有理点全体の集合を
E(Q)
と記します。ただし無限遠点を1つ余分に付け加えておきます。 すなわち、
E(Q):={(x,y)∈Q2?y2=x3+ax+b}∪{∞}
とします。

Mordellの定理とBirchとSwinnerton-Dyer予想
以上の考察から、楕円曲線の有理点は二次曲線の場合とは異なり、有理点の数が有限個だったり無限個だったりと複雑な振る舞いをしていることが分かります。 これに関して、以下の大事な結果が知られています。

Mordellの定理 
E(Q)
は、有限個の有理点
P1,…,Pn
から上記の操作で生成される。

与えられた楕円曲線の有理点の個数の大きさを予想しているのがBirch and Swinnerton-Dyer予想です。
Birch and Swinnerton-Dyer予想(BSD予想)は、楕円曲線の有理点の大きさが、
L関数と呼ばれる関数で記述されると予想しています。 この予想は、幾何学的な対象の数論的な情報と
L関数の関係を調べるという、整数論と呼ばれる数学分野の中心的なテーマの1つであり、今後取り組むべき重要な7つの問題としてクレイ数学研究所により選ばれたミレニアム懸賞問題の1つでもある、とても大切な問題です。

www.math.kyoto-u.ac.jp/~tetsushi/files/Galois_fest_ito_200705.pdf
・「楕円曲線の数論幾何」伊藤哲史先生(京都大学)のスライド






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<810KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef