- 12 名前:現代数学の系譜 雑談 mailto:sage [2020/03/11(水) 17:27:41.95 ID:VzMFTLrl.net]
- >>8
>この話の意味が分るか?(笑 哀れな素人さん、どうも、ガロアスレのスレ主です。(^^ 分かりますよ 「レーヴェンハイム?スコーレムの定理」の ”定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。” ですね さすがですね(^^; https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム?スコーレムの定理 (抜粋) 可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。 定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。この事実を定理の一部とする場合もある。 レーヴェンハイム-スコーレムの定理から導かれる結論の多くは、一階とそうでないものの違いがはっきりしていなかった20世紀初頭の論理学者にとっては直観に反していた。 例えば、真の算術 (true arithmetic) には非可算なモデルがあり、それらは一階のペアノ算術を満足するが、同時に帰納的でない部分集合を持つ。 さらに悩ましかったのは、集合論の可算なモデルの存在である。それにもかかわらず、集合論は実数が非可算であるという文を満たさなければならない。 この直観に反するような状況はスコーレムのパラドックスと呼ばれ、可算性 (countability) は絶対的 (absolute) ではないことを示している。 歴史 後にモデル理論となる重要な成果は、レオポルト・レーヴェンハイム が "Uber Moglichkeiten im Relativkalkul"(1915年)で発表した下記の「レーヴェンハイムの定理」であった[2]。 全ての可算なシグネチャ σ について、充足可能な全てのσ文は可算モデルにおいて充足可能である。 しかし、レーヴェンハイムの証明は間違っていた。1920年、トアルフ・スコーレムは後にスコーレム標準形と呼ばれるようになる論理式を使って選択公理に基づいた正しい証明を行った
|

|