一様構造と位相構造の概念的な違いは、一様空間においては点の近さや相対的な近さといったようなある種の概念が定式化できるというようなことにある。 つまり、「点 x の点 a への近さは、点 y の点 bへの近さよりも近い」といったような考察は一様空間において意味を成すのである。 対する一般の位相空間では、部分集合 A, B が与えられれば、「点 x が集合 A にどれほどでも近い(x が A の閉包に属する)」とか「集合 A は集合 B よりも小さい近傍である」といったようなことは言える。 しかし点の近さの概念や相対的な近さといったようなものは、位相構造のみでは記述することができない。