[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 04:15 / Filesize : 567 KB / Number-of Response : 1080
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学



171 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2020/05/18(月) 23:34:06.17 ID:8lQUmKDl.net]
>>143
つづき

閉集合を用いた定義
(開集合の補集合としての)閉集合を用いても同値な定義が得られる。即ち、二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、任意の閉集合 F ⊆ Y に対しその逆像
f^{-1}(F)={x∈ X| f(x)∈ F}
が X の閉集合となるときに言う。

近傍系を用いた定義
近傍を用いて位相空間の一点における写像の連続性を定義することもできる。
位相空間 X 上で定義された写像 f: X → Y が一点 x において連続であるとは、像 f(x) の任意の近傍の f による逆像が再び x の近傍となること、即ち
∀ N∈ N_f(x): f^{-1}(N)∈ M_x
が成立することを言う。

近傍系が上方集合(英語版)系であるという性質を用いれば、

∀ N∈ N_f(x),∃ M∈ M_x: M⊆ f^{-1}(V)
∀ N∈ N_f(x),∃ M∈ M_x: f(M)⊆ N
などのように言い換えることもできる。後者は逆像ではなく像を使った言い換えになっている。言葉で言えば、これはどんなに小さな近傍を選んでもそれに写される近傍が必ず見つけられることを言っているのである。

またこの定義は、基本近傍系あるいは特に開近傍のみを考えるものに単純化しても、実は同値になる。
∀ V∈ T,f(x)∈ V,∃ U∈ T,x∈ U: U⊆ f^{-1}(V)
∀ V∈ T,f(x)∈ V,∃ U∈ T,x∈ U: f(U)⊆ V
やはり後者は逆像の代わりに像を用いた言い換えである。これは、X, Y が距離空間のときには、任意の近傍を考える代わりに x および f(x) をそれぞれ中心とする開球体全体の成す近傍系を考えるというのと同じことであって、このとき、写像の連続性は距離空間の文脈における通常の ε-δ を用いた連続函数の定義と同じであることが確かめられる。
一方、一般の位相空間では近さや距離の概念を使わずに議論しなければならない。
とは言え、終域 Y がハウスドルフならば、f が一点 a において連続であるための必要十分条件を、x を a に限りなく近づけるときの f の極限が f(a) であること、と述べることができることには注意。
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<567KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef