[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 04:27 / Filesize : 404 KB / Number-of Response : 1060
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 31問目



971 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/03/25(水) 17:58:40 ID:YcAWd6vy.net]
前>>918直線も曲線のうち。
半径1の半円のコーナー2か所を半径rの円弧で円くカットするとき、
半円のカットされる円弧部分に対する中心角をθとすると、
(1-r)sinθ=r
sinθ=(1+sinθ)r
r=sinθ/(1+sinθ)
1-r=1/(1+sinθ)
r^2=sin^2θ/(1+sinθ)^2
面積=π/2-θ+(1-r)rcosθ+πr^2(π+2θ)/2π
=π/2-θ+(1-r)rcosθ+r^2(π/2+θ)
=π/2-θ+sinθcosθ/(1+sinθ)^2+(π/2+θ)sin^2θ/(1+sinθ)^2
周長=π-2θ+2(1-r)cosθ+2πr(π+2θ)/2π
=π-2θ+2(1-r)cosθ+r(π+2θ)
=π-2θ+2cosθ/(1+sinθ)+(π+2θ)sinθ/(1+sinθ)
面積/周長={π/2-θ+sinθcosθ/(1+sinθ)^2+(π/2+θ)sin^2θ/(1+sinθ)^2}/{π-2θ+2cosθ/(1+sinθ)+(π+2θ)sinθ/(1+sinθ)}
={(π/2-θ)(1+sinθ)^2+sinθcosθ+(π/2+θ)sin^2θ}/{(π-2θ)(1+sinθ)^2+2cosθ(1+sinθ)+(π+2θ)sinθ(1+sinθ)}
θで微分し、分子=0とすると、
θ=27.6578187……°






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<404KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef