- 943 名前:132人目の素数さん mailto:sage [2020/03/22(日) 10:38:19 ID:fXf64y18.net]
- >>890 の式を整理して精度を上げてみる
In[1]:= NIntegrate[Cos[t1]Cos[t2] (2(Sin[2p]Cos[t1]Cos[t2])^2+(Cos[p](-Cos[t1]+Cos[t2]+Sin[t1-t2]))^2+(Sin[p](Cos[t1]+Cos[t2]+Sin[t1+t2]))^2) /(24Pi Sqrt[(Sin[2p]Cos[t1]Cos[t2])^2+(Cos[p](-Cos[t1]+Cos[t2]+Sin[t1-t2]))^2+(Sin[p](Cos[t1]+Cos[t2]+Sin[t1+t2]))^2]) ,{p,0,Pi/2},{t1,-Pi/2,Pi/2},{t2,-Pi/2,Pi/2}, WorkingPrecision->12, PrecisionGoal -> 11] Out[1]= 0.119679720136
|

|