- 780 名前:132人目の素数さん mailto:sage [2020/03/12(Thu) 13:08:38 ID:ab2iyO1k.net]
- これ貼っとこか
0508 132人目の素数さん 2018/06/30 02:42:25 >>505 問題を一般化して、 カードA,B,C,Dの排出確率をa,b,c,dとする。(a,b,c,d>0, a+b+c+d≦1) カードAが1枚出るまで引くときの平均枚数をM(A)とすると、 初回でカードAが出た場合の枚数は 1,出なかった場合の平均枚数は 1+M(A) となる。 よって M(A) = a + (1-a)(1+M(A)) これを解いて M(A)=1/a、同様に M(B)=1/b, M(C)=1/c, M(D)=1/d カードA,Bがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B)とすると、 初回でカードAが出た場合の平均枚数は 1+M(B) 初回でカードBが出た場合の平均枚数は 1+M(A) どちらも出なかった場合の平均枚数は 1+M(A,B) となる。 M(A,B) = a(1+M(B)) + b(1+M(A)) + (1-(a+b))(1+M(A,B)) これを解いてM(A,B) = (1 + aM(B) + bM(A)) / (a+b) = (1 + a/b + b/a) / (a+b) 整理して M(A,B) = (1 + ((a+b)/b - 1) + ((a+b)/a - 1)) / (a+b) = ((a+b)/b + (a+b)/a - 1)) / (a+b) = 1/a + 1/b - 1/(a+b) 同様の計算で、 カードA,B,Cがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B,C)とすると、 M(A,B,C) = 1/a + 1/b + 1/c - 1/(a+b) - 1/(b+c) - 1/(c+a) + 1/(a+b+c) カードA,B,C,Dがそれぞれ1枚以上出るまで引くときの平均枚数をM(A,B,C,D)とすると、 M(A,B,C,D) = 1/a + 1/b + 1/c + 1/d - 1/(a+b) - 1/(a+c) - 1/(b+c) - 1/(a+d) - 1/(b+d) - 1/(c+d) + 1/(a+b+c) + 1/(d+a+b) + 1/(c+d+a) + 1/(b+c+d) - 1/(a+b+c+d) を得る。
|

|