[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 04:27 / Filesize : 404 KB / Number-of Response : 1060
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 31問目



497 名前:132人目の素数さん mailto:sage [2020/02/20(木) 10:35:13.96 ID:bZRqCWPO.net]
nが良くない整数、かつn+a,n+bのどちらも良い整数である時、
n+a=bm, n+b=ak より a(k+1)=b(m+1).
これよりk=bk'-1であるから
n=a(bk'-1)-b.
nの良くない性より n≦ab-a-b であるから、k'=1.
以上から、任意の良くない整数 n<N:=ab-a-b について、n+a,n+bの少なくとも一方は良くない整数。
したがって、0≦n≦N を満たす整数nについて、nが良くない整数ならばN-nは良い整数であることが導ける。
また、N=N-0が良くない整数であることと、
(N-nが良くない整数ならばN-(n+a)もN-(n+b)も良くない整数である)ことから、
0≦n≦N を満たす整数nについて、nが良い整数ならばN-nは良くない整数であることが導ける。
以上の議論から、整数n∈[0,N]について、nとN-nの片方だけが良くない整数であることがわかる。
ゆえに、求める個数は(1+N)/2=(a-1)(b-1)/2.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<404KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef