- 497 名前:132人目の素数さん mailto:sage [2020/02/20(木) 10:35:13.96 ID:bZRqCWPO.net]
- nが良くない整数、かつn+a,n+bのどちらも良い整数である時、
n+a=bm, n+b=ak より a(k+1)=b(m+1). これよりk=bk'-1であるから n=a(bk'-1)-b. nの良くない性より n≦ab-a-b であるから、k'=1. 以上から、任意の良くない整数 n<N:=ab-a-b について、n+a,n+bの少なくとも一方は良くない整数。 したがって、0≦n≦N を満たす整数nについて、nが良くない整数ならばN-nは良い整数であることが導ける。 また、N=N-0が良くない整数であることと、 (N-nが良くない整数ならばN-(n+a)もN-(n+b)も良くない整数である)ことから、 0≦n≦N を満たす整数nについて、nが良い整数ならばN-nは良くない整数であることが導ける。 以上の議論から、整数n∈[0,N]について、nとN-nの片方だけが良くない整数であることがわかる。 ゆえに、求める個数は(1+N)/2=(a-1)(b-1)/2.
|

|