[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 04:27 / Filesize : 404 KB / Number-of Response : 1060
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 31問目



161 名前:132人目の素数さん mailto:sage [2020/02/04(火) 19:18:15 ID:VleZ36bS.net]
xy平面において、x軸上の正の部分のみ、速度 v、その他の領域は速度 1 で移動できるものとする。
原点にいる人物が、目標地点(cosθ,sinθ) に到達すべく、移動する。
この時、より短時間で目標地点に到達するには、次の戦略αとβ、どちらが有利かを考える。
戦略α:現地点から、直接目標地点の方向へ速度 1 で移動する。
戦略β:x軸に沿って速度 v で移動する。

ε を正の小さな量とする。戦略αあるいはβ取って移動を開始し、εの時間がたった時のそれぞれの到達地点をA,Bとすると
A(εcosθ,εsinθ)、B(vε,0)
目標地点までの距離は、それぞれ、1-ε、√((vε-cosθ)^2+sin^2θ) となるが、さて、どちらが小さいか?
二乗したもの同士の差をとって比べてみると、
(1-ε)^2-((vε-cosθ)^2+sin^2θ) = 1-2ε+ε^2 -v^2ε^2+2vεcosθ-1 = ε(2v cosθ-2)+(1-v^2)ε^2
εは小さな正の量としているので、二次の項を無視すると、cosθ>1/v で 
1-ε>√((vε-cosθ)^2+sin^2θ) となる。
つまり、目的地との方向のずれがθあるものの、v 倍の速度で移動できるとき、 cosθ>1/v を
満たすなら、そのコースは直接目的地に向かうより有利である とえる。

この結論は、θとvのみが関与し、他の次元にも適用可。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<404KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef