[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 19:19 / Filesize : 843 KB / Number-of Response : 1135
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



60 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/11/19(火) 13:52:36.20 ID:NP7FWnJl.net]
>>49 関連

Inter-universal geometry と ABC予想 42
https://rio2016.5ch.net/test/read.cgi/math/1572150086/253-
より

https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/244782
https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244782/1/B76-01.pdf
タイトル: Mono-anabelian Reconstruction of Number Fields (On the examination and further development of inter-universal Teichmuller theory)
著者: Hoshi, Yuichiro
発行日: Aug-2019
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu

Abstract
The Neukirch‐Uchida theorem asserts that every outer isomorphism between the absolute
Galois groups of number fields arises from a uniquely determined isomorphism between the
given number fields. In particular, the isomorphism class of a number field is completely deter‐
mined by the isomorphism class of the absolute Galois group of the number field. On the other
hand, neither the Neukirch‐Uchida theorem nor the proof of this theorem yields an “explicit
reconstruction of the given number field”. In other words, the Neukirch‐Uchida theorem only
yields a bi‐anabelian reconstruction of the given number field. In the present paper, we discuss
a mono‐anabelian reconstruction of the given number field. In particular, we give afunctorial
“group‐theoretic” algorithm for reconstructing, from the absolute Galois group of a number
field, the algebraic closure of the given number field [equipped with its natural Galois action]
that gave rise to the given absolute Galois group.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<843KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef