- 94 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/09/13(金) 08:04:42.51 ID:Ct8Lh9wH.net]
- >>84
>フォン・ノイマン宇宙自体は推移的であっても >フォン・ノイマン宇宙の全ての集合が推移的なわけではない 意味分かんねー(^^ ”フォン・ノイマン宇宙の全ての集合が推移的なわけ”ですよね ∵ フォン・ノイマン宇宙は、「0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラス」 (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理 (抜粋) V=WF ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。 ZF公理系の他の公理系から得られる種々の集合演算(対集合、和集合、冪集合) の結果としての集合は常にWF内に含まれるため、V=WFの仮定は全ての集合を0に通常の集合演算を施すことによって得られるものだけに制限することを主張している。 したがって、例えばx={x}のような集合やx∈yかつy∈xなる集合は正則性の公理の下では集合にはなり得ない。 WFは通常の集合演算に関して閉じているため、ZF公理系から得られる全ての真なる命題がZF公理系においても真となることが分かる。 このため、WF内で通常の数学を展開できることが知られている。 実際、x={x}のような集合の存在はZF公理系からは独立だが、数学を展開する上でこのような集合が現れることはない。 その一方で、正則性の公理は必ずしもZF公理系を拡張するために必要なものではないが、ZF公理系と他のいくつかの命題が独立であることを証明する際にその効果を発揮する。 https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%B3%E3%83%BB%E3%83%8E%E3%82%A4%E3%83%9E%E3%83%B3%E5%AE%87%E5%AE%99 フォン・ノイマン宇宙 (抜粋) 数学の集合論とその周辺分野において、フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。この集まりは、ZFCによって定義され、ZFCの公理に解釈や動機を与えるためにしばしば用いられる。 つづく
|

|