- 849 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 07:51:47.75 ID:aKfhohl9.net]
- >>782
つづき 7. 解の置換(ガロア群) 「5次方程式に解の公式がないこと」と「円周等分方程式がべき根で解けること」の証明はどちらも、方程式がどんな解の置換を持っているかということが重要だった。 そこでより一般的にどんな方程式にも通用する形で解の置換を定義したい。歴史的には次の2つのやり方がある。 ・単拡大(単純拡大)性にうったえて、原始元とその最小多項式を使って定義する(ガロア)。 ・体の自己同型写像として定義(デデキント)。 このうちデデキントのものの方が簡潔だしたぶん判りやすい。ただし「方程式が解けるかどうか」という視点から見ると、解が判らない状態でどうやってその写像を求めていいのかサッパリ判らないところが気持ち悪いかもしれない。 8. 原始元の最小多項式と基本定理の証明 さらに、もしも次の2つの性質 1)g(x)は重解を持たない。 2)vをどの解vkに置換することも可能である(別に言い方をすると、全てのvkがvの有理式で書ける。体の言葉でいうと、どのvkももとの体に入っている)。ガロアの定義ではこれが成り立っている場合だけを扱っている。 が成り立っている場合は 群について: 解の置換の総数(群の位数) = g(x)の次数 となる。 おおざっぱに言えば、1が成り立つのを分離拡大、2が成り立つのを正規拡大、1+2をガロア拡大と呼ぶ。なのでガロア拡大の場合は、 ・体の拡大次数 = 群の位数 が成り立つ。 ガロア理論の基本定理は一言で言えば ガロア拡大では、体(拡大
|

|