1 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/09/09(月) 19:52:11.23 ID:w2gV7wtr.net] この伝統あるガロアすれは、皆さまのご尽力で、 過去、数学板での勢いランキングで、常に上位です。 このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。 それで宜しければ、どうぞ。 後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^ 最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^ いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。 スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。 話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。 スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。 興味のある方は、過去ログを(^^ なお、 小学レベルとバカプロ固定 サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」。知能が低下してサルになっています) (参考)blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日 (なお、サイコの発言集「実際に人を真っ二つに斬れたら 爽快極まりないだろう」、「狂犬」、「イヌコロ」、「君子豹変」については後述(^^; ) High level people (知能の低い者が、サルと呼ばれるようになり、残りました。w(^^; ) 低脳幼稚園児のAAお絵かき 上記は、お断り!! 小学生がいますので、18金(禁)よろしくね!(^^ (旧スレが1000オーバー(又は間近)で、新スレを立てた)
755 名前:132人目の素数さん mailto:sage [2019/10/03(木) 20:54:52.46 ID:vF9CNmr9.net] ポカン口の白痴(゜ロ゜Gスレ1のこっ恥ずかしい誤り 「ω={{…(無限個のカッコ)…}}は無限集合!」 ギャハハハハハハ!!!・・・笑いすぎて腹いてぇwwwwwww
756 名前:哀れな素人 [2019/10/03(木) 21:28:07.15 ID:ITKGircK.net] このスレではサル石が本性全開(笑
757 名前:132人目の素数さん [2019/10/03(木) 21:30:37.20 ID:m3mklIbc.net] >>697 >・現代確率論が、独立な確率変数の無限族を扱えることは、下記時枝記事にもある 扱えたとしても勝てる戦略にならなければ無意味 まだ分からんのかw 物覚えの悪いサルだのうw
758 名前:哀れな素人 [2019/10/03(木) 21:35:27.83 ID:ITKGircK.net] ↑とIDを変えて自演(笑 ID:vF9CNmr9 ID:m3mklIbc これ、どちらもサル石(笑
759 名前:132人目の素数さん mailto:sage [2019/10/04(金) 06:36:47.71 ID:PGOderPE.net] >>701 Gスレ1をなんたら問題に逃がしてはいかんよ 「集合論の初歩」という明確な誤りで蒸し焼きにしようぜw
760 名前:132人目の素数さん mailto:sage [2019/10/04(金) 06:39:27.04 ID:PGOderPE.net] >>700 安達よ Gスレ1なんかと仲良くしないほうがいいぞ 馬鹿が伝染するからw
761 名前:132人目の素数さん mailto:sage [2019/10/04(金) 06:46:51.02 ID:PGOderPE.net] Gスレ1の愚かな誤り 1.{}∈{{}},{{}}∈{{{}}} だから {}∈{{{}}} 2.{{}}∈{{{}}} ならば {{}}∈{{{}}} 3.{{…(無限個の{})…}}は、無限集合 ど
762 名前:れもこれも小学生未満の幼稚園児並の初歩的誤り ヒドイ・・・ヒドすぎる [] [ここ壊れてます]
763 名前:132人目の素数さん mailto:sage [2019/10/04(金) 06:49:44.48 ID:PGOderPE.net] 集合論の正しい結論 1.{}∈{{}},{{}}∈{{{}}} だが Not( {}∈{{{}}} ) 2.{{}}∈{{{}}} だが Not( {{}}∈{{{}}} ) 3.{{…(無限個の{})…}}は、正則性公理に反するので集合でないが 正則性公理を除いた集合論でも、要素は1つだから有限集合 こんなの小学生でもわかるぞw
764 名前:132人目の素数さん mailto:sage [2019/10/04(金) 06:51:56.02 ID:PGOderPE.net] ついでにいうと …{{}}… (無限個の{}) は、そもそも集合たり得ない 何が要素になるのか分からんから
765 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/04(金) 09:57:04.94 ID:DXkMGtcj.net] >>705-706 おサルさん、哀れな素人さんのスレを、堪らず逃げ出したかw(゜ロ゜; あっちのスレで、ボコボコにしてやるよ(^^
766 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/04(金) 12:19:04.51 ID:DXkMGtcj.net] >>706-708 これ。哀れな素人さんのスレに、貼ったよww(^^ 現代数学はインチキのデパート https://rio2016.5ch.net/test/read.cgi/math/1570145810/3-
767 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/04(金) 13:18:13.47 ID:DXkMGtcj.net] https://www.nikkei.com/article/DGXMZO50497670S9A001C1MM8000/ 車大手、中途採用広がる トヨタは総合職の年5割に 【イブニングスクープ】 2019/10/2 18:00日本経済新聞 電子版 (抜粋) 自動車業界で自動運転など次世代技術に対応するため、中途採用を拡大する動きが広がってきた。 トヨタ自動車は2019年度に総合職の採用に占める中途採用の割合を18年度の1割から3割に引き上げ、中長期的に5割とする。 ホンダは19年度、採用全体の約4割に当たる約660人を中途採用に充てる。 IT(情報技術)などの専門人材を中心に確保し、給与も実績に応じ評価する。
768 名前:132人目の素数さん [2019/10/05(土) 10:08:43.24 ID:bWNxCkT0.net] >>697 >数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ 数学的帰納法で任意の有限列で成り立つことは言えても無限列で成り立つことは言えません 近所の高校生に教えてもらっては?
769 名前:132人目の素数さん mailto:sage [2019/10/05(土) 15:01:32.33 ID:kZwmbLNI.net] ああ、ここがガロアスレですか >数学的帰納法で任意の有限列で成り立つことは言えても >無限列で成り立つことは言えません その通りですね 任意の自然数で成り立つ、といえるだけで 無限大∞で成り立つ、とはいえません ∞は自然数じゃありませんから
770 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/05(土) 17:32:37.76 ID:JrhjRl4x.net] >>711-712 どうも。スレ主です。 お説は、確率過程論の一冊でも読んでから、言われた方がよろしいかと 大学教員に教えて貰って下さいね 高校生では足りませんよね(^^
771 名前:132人目の素数さん [2019/10/05(土) 21:04:07.97 ID:bWNxCkT0.net] >>713 確率過程論のどんなマジックが数学的帰納法を変質させると? バカも休み休みにして下さいね
772 名前:132人目の素数さん mailto:sage [2019/10/05(土) 22:26:01.64 ID:kZwmbLNI.net] 確率過程?なんのことですか? 「数学的帰納法で任意の有限列で成り立つことは言えても 無限列で成り立つことは言えません」 といってるだけですから
773 名前:132人目の素数さん mailto:sage [2019/10/05(土) 22:29:16.17 ID:kZwmbLNI.net] 大体、ガロア理論のスレッドで確率過程の話をするのはおかしいですね 正気ですか?
774 名前:132人目の素数さん mailto:sage [2019/10/05(土) 22:32:52.81 ID:kZwmbLNI.net] ちょっと見させていただきましたが >>660 >「σ-1・H・σはHと同型」ってまさに正規部分群でしょ? …こんな誤解をしてる人がガロア理論を理解するのは不可能でしょう だって、任意の部分群が正規部分群になっちゃうじゃないですか 区別する意味がなくなりますよ おかしいと思わないんですかね?
775 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 08:17:22.55 ID:d8OQiN+r.net] >>717 どうも。スレ主です。 激励ありがとう 正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした みなさんに、教えて頂きました ありがとう(^^
776 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 08:20:11.91 ID:d8OQiN+r.net] >>716 >大体、ガロア理論のスレッドで確率過程の話をするのはおかしいですね どうも。スレ主です。 テンプレ>>1 より ”このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。 それで宜しければ、どうぞ。” です。 スレタイに、”雑談”と入れています だいたい、5Chは雑談ですけどね(^^
777 名前:第六天魔王 [2019/10/06(日) 09:08:16.29 ID:zyaquwkF.net] >>718 >正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした 素直でよろしいw その調子で集合論スレでも、無限理解の誤りを認めやがれ 貴様は、数学のスの字も知らん馬鹿なんだからな 自分が賢いとか自惚れるのは一万年早ぇ!www
778 名前:第六天魔王 [2019/10/06(日) 09:11:31.79 ID:zyaquwkF.net] >>719 >このスレは、現代数学のもとになった物理・工学の雑談スレとします。 ここで、物理や工学の話なんか聞いたことないがな 似非数学の話ばっかりだwww >スレタイに、”雑談”と入れています 馬鹿のほざくことは、雑談というより猥談だな どうせならHNも「現代数学の系譜 猥談」にしたらどうだ?www
779 名前:哀れな素人 [2019/10/06(日) 09:14:35.48 ID:aAisPx0D.net] スレ主よ、第六天魔王はサル石だ(笑 サル石という名前が知られ始めたので名前を変えたようだ(笑 どんなにごまかそうと、その噛みつき魔丸出しの文章を見れば分る(笑
780 名前:第六天魔王 [2019/10/06(日) 09:30:12.24 ID:zyaquwkF.net] やれやれ、安達とかいう仔犬がここでも吠えてやがるwww 俺様が第六天魔王を名乗った理由はここに書いたから読みやがれ https://rio2016.5ch.net/test/read.cgi/math/1570237031/118 ま、しかし、俺が信長だとして、ここの馬鹿は信玄ほどの格もない せいぜい足利義昭程度の小者かwwwwwww
781 名前:哀れな素人 [2019/10/06(日) 09:33:12.56 ID:aAisPx0D.net] ↑見ろ。このアホさとチンピラ臭丸出しの文章(笑 これがサル石という男である(笑 相手かまわず誰にでも噛みつく(笑 在日同和の低学歴バカだから 他人に噛みつきたくて噛みつきたくてたまらない(笑 噛みつかないと気が済まない(笑 一種の精神病者(笑
782 名前:第六天魔王 [2019/10/06(日) 09:37:57.62 ID:zyaquwkF.net] 今日の気分 Κατά τον Δαίμονα Εαυτού https://www.youtube.com/watch?v=sGhYcwcdo-4 え?意味だって?「汝の意志することを行え」だよ ラブレーの『ガルガンチュワとパンタグリュエル』読みやがれ 俺も全然読んでないけどなwww
783 名前:哀れな素人 [2019/10/06(日) 09:43:53.19 ID:aAisPx0D.net] ↑見ろ。このアホさとチンピラ臭丸出しの文章(笑 在日同和の低学歴バカ(笑 このスレは誰も来ないから本性全開(笑
784 名前:ID:1lEWVa2s mailto:sage [2019/10/06(日) 09:50:49.20 ID:Hf8pbZj7.net] >>725 ガルガンチュアってインターステラーのブラックホールでしょ
785 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 14:01:43.14 ID:d8OQiN+r.net] >>726 哀れな素人さん、どうも。スレ主です。 >このスレは誰も来ないから本性全開(笑 確かに(^^
786 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 14:03:18.93 ID:d8OQiN+r.net] いま、ちょっと、下記のスレへ遊びに行っています。よろしければ、覗いてみてください(^^ 現代数学の系譜 カントル 超限集合論 https://rio2016.5ch.net/test/read.cgi/math/1570237031/
787 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 14:08:26.48 ID:d8OQiN+r.net] >>727 ID:1lEWVa2さん、どうも。スレ主です。 これか https://qetic.jp/technology/blackhole-intersteller-190930/333264/ Top > Tech > 映画『インターステラー』そのまま?NASAが公開したブラックホールの最新ヴィジュアルが話題に 映画『インターステラー』そのまま?NASAが公開したブラックホールの最新ヴィジュアルが話題に Tech | 2019.09.30 Mon | https://cdn.qetic.jp/wp-content/uploads/2019/09/30152207/technology190930-blackhole-intersteller-1.jpg https://youtu.be/nyYEYzQ77Es INTERSTELLAR?ALL SPACE SCENES 2014年に公開された本作品は、映像を製作するにあたって高度な物理学と科学的検証を行い、忠実に再現されたCG
788 名前:は公開当初から高い評価を得ていた。 [] [ここ壊れてます]
789 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 14:10:46.77 ID:d8OQiN+r.net] >>730 追加 https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AB%E3%82%AC%E3%83%B3%E3%83%81%E3%83%A5%E3%82%A2 ガルガンチュア (抜粋) ガルガンチュア(ガルガンテュア、ガルガンチュワとも)は、フランソワ・ラブレーが描いた物語『ガルガンチュワ物語』『パンタグリュエル物語』の登場人物。以下はこれにちなむ。 ・特撮映画『フランケンシュタインの怪獣 サンダ対ガイラ』に登場する怪獣、サンダとガイラの海外版での名称。 ・ロバート・L・フォワードの小説『ロシュワールド』に登場する巨大ガス惑星。 ・SF映画『インターステラー』に登場する巨大ブラックホール。 ・TVアニメ『超電磁ロボ コン・バトラーV』に第18話に出てくる巨大ロボット(ガルガンチュワ)。 ・小説『オーラバトラー戦記』に登場するオーラバトラー。 ・漫画『銃夢 LastOrder』に登場する巨大人型生物。 ・FPS『ハーフライフ』に登場する怪獣。 ・アダルトゲーム『ヤミと帽子と本の旅人』に登場する錬金術師。 ・アダルトゲーム『ハーレムブレイド ?The Greatest of All Time.?』に登場するボスキャラクター。
790 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 14:12:27.17 ID:d8OQiN+r.net] >>731 追加の追加 https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AB%E3%82%AC%E3%83%B3%E3%83%81%E3%83%A5%E3%83%AF%E3%81%A8%E3%83%91%E3%83%B3%E3%82%BF%E3%82%B0%E3%83%AA%E3%83%A5%E3%82%A8%E3%83%AB (抜粋) 『ガルガンチュワとパンタグリュエル』(ガルガンテュアとパンタグリュエル、Gargantua, Pantagruel)とは、フランス・ルネサンス期の人文主義者フランソワ・ラブレー(Francois Rabelais)が著した物語『ガルガンチュワ物語』『パンタグリュエル物語』のこと。 ガルガンチュワ(ガルガンチュア[1]、ガルガンテュアとも)、パンタグリュエルという巨人の一族を巡る物語である。 第二之書・第一之書はアルコフリバス・ナジエ(Alcofribas Nasier)という筆名(ラブレーのアナグラム)で、第三之書以降は本名で刊行した。1532-1552年に4巻までが出版された。ラブレーの死後に第5巻が刊行されたが、偽書説もある。 『ガルガンチュワ物語』の方が執筆・出版とも後だが、内容的にみて「第一之書」と呼び、『パンタグリュエル物語』を「第二之書」と呼ぶ。
791 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 20:39:25.08 ID:d8OQiN+r.net] メモ https://tech.nikkeibp.co.jp/atcl/nxt/column/18/00001/02729/ 2019/08/08 20:30 ニュース解説 富士通が年収最大4000万円で技術者を厚遇、NTTデータ・NECに続く「大盤振る舞い」 山端 宏実=日経 xTECH/日経コンピュータ (抜粋) 国内のIT大手がAI(人工知能)などの分野で高度なスキルを持つIT人材を、高給で処遇する制度を相次ぎ導入する。若手でも顕著な実績を残せば、年収は数千万円に達する。米グーグル(Google)などの「GAFA」を中心に海外のネット大手がやりがいや高額な報酬で世界中の人材をひきつけるなか、国内のIT大手も抜本的な解決策を求められている。 「役員レベルの処遇も」、富士通時田社長が断言 富士通の時田隆仁社長は2019年8月8日、日経 xTECHなどの取材に応じ、2020年3月までをめどに高度人材向けに高給で処遇する制度を採り入れると明らかにした。AIやサイバーセキュリティーといった分野を手掛ける高度人材を対象に、専門性の高さや市場価値などを踏まえて、報酬を個別に設定できる
792 名前:謔、にする。 https://cdn-tech.nikkeibp.co.jp/atcl/nxt/column/18/00001/02729/ph01.jpg?__scale=w:400,h:314&_sh=0ec0f00b00 [] [ここ壊れてます]
793 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/06(日) 23:16:30.89 ID:d8OQiN+r.net] メモ https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 二階述語論理 (抜粋) 二階論理の表現能力 空でなく上に有界な実数の集合があるとき常にその集合には上限が存在するという命題を表すには、二階述語論理が必要となる。 二階述語論理では、「ドメインは有限である」とか「ドメインは可算無限集合の濃度である」といった文も形式的に表現可能である。 一階述語論理ではこれら(「有限集合であること」や、「可算集合であること」)を表現できないことが、レーヴェンハイム-スコーレムの定理から導かれる。 https://ja.wikipedia.org/wiki/%E4%B8%80%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 一階述語論理 https://ja.wikipedia.org/wiki/%E6%95%B0%E7%90%86%E8%AB%96%E7%90%86%E5%AD%A6 数理論理学 (抜粋) 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。 集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。
794 名前:第六天魔王 mailto:sage [2019/10/07(月) 19:26:40.00 ID:rpPbPz0q.net] 馬鹿に告ぐ ガロア理論をあきらめたんなら 次のスレッドから「古典ガロア理論も読む」を削っとけ
795 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/08(火) 14:03:04.42 ID:e/1pBNsJ.net] メモ https://esori.hatenadiary.org/entry/20090507/1241674532 esoriの日記 2009-05-07 Paris?Harringtonの定理 ja.wikipedia.org/wiki/Paris%26%238211%3BHarrington%20theorem wikipedia:Paris?Harrington theorem 'strengthened finite Ramsey theorem'という定理がPA(一階のペアノ算術)からは証明できないらしい。PAで証明できない定理の例として、かなり面白いと思った。 wikipediaの記事にも書いてあるが、"strength finite Ramsey theorem"は以下のような主張。 任意の正の整数n,k,mに対して十分大きく自然数Nをとれば、{1,2,3,...,N}のn点部分集合全体をk色で塗り分けたとき、どんな塗り分け方をしても、m個以上の要素からなる部分集合Y⊂{1,2,3,...,N}が存在し、Yのn点部分集合はすべて同じ色になり、またYの要素の数は、Yに含まれる最小の数以上になる。
796 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/08(火) 18:01:09.99 ID:e/1pBNsJ.net] メモ AWSの大規模障害は、毎年年に1回程度発生しているので 業務用なら、走らせるリージョンを複数確保しておくべし という法則があるそうです(^^ https://tech.nikkeibp.co.jp/atcl/nxt/mag/nnw/18/041800011/092000023/ 2019/10/07 07:00 NEWS pickup & digest AWSに大規模障害が発生 東京リージョンのEC2とRDSで 高橋 健太郎=日経NETWORK 米アマゾン ウェブ サービス(AWS)のクラウドサービス「Amazon Web Services(AWS)」の東京リージョンの主要サービスで障害が発生した。発生したのは仮想マシンサービスの「Amazon EC2」とリレーショナルデータベース(RDB)サービスの「Amazon RDS」の2つ。
797 名前:第六天魔王 mailto:sage [2019/10/08(火) 19:36:46.84 ID:bC9PKbug.net] このスレッドは 「現代数学 情報収集スレ」 とでも改名したほうがいいw
798 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:26:53.48 ID:2o5RsZjT.net] >>738 >このスレッドは >「現代数学 情報収集スレ」 >とでも改名したほうがいいw テンプレ>>1 より >スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。 とある テンプレ>>5 より、下記 スレ68 https://rio2016.5ch.net/test/read.cgi/math/1560374890/10- 10 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/06/13(木) 06:35:46.84 ID:tNmlg93R [10/62] 大学新入生もいると思うが、間違っても5CH(旧2CH)で数学の勉強なんて思わないことだ このスレは、半分趣味と遊びのスレと思ってくれ(^^; もう半分は、ここはおれのメモ帳だ (ここには、自分が面白いと思った情報を集めてあるんだ。過去ログ見ると、いろいろ面白い情報(リンクやPDF があるよ(^^ ) ( もしサイト移動などでリンク切れのときは、引用してある文章のキーワードによる検索をお願いします ) 以下過去スレより再掲 rio2016.2ch.net/test/read.cgi/math/1492606081/7 7 自分:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/04/19(水) 22:07:49.66 ID:gLi5Ebjw まあ、過去何年かにわたって、猫さん、別名、¥ ◆2VB8wsVUooさんが、数学板を焼いていたからね ガロアスレは別として、数学板は焼け跡かな 再生は無理だろう そもそも、5CH(旧2CH)は、数学に向かない アスキー字に制限され、本格的な数学記号が使えない 複数行に渡る記法ができない 複数行に渡る矢印や、図が描けない(AA(アスキーアート)で数学はできない) 大学数学用の掲示板を、大学数学科が主体となって、英語圏のような数学掲示板を作った方がいいだろうな、実名かせめてハンドルネーム必須でね、プロないしセミプロ用のを
799 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:28:41.97 ID:2o5RsZjT.net] スレ68 https://rio2016.5ch.net/test/read.cgi/math/1560374890/11- 個人的には、下記類似” 先生>周りの人>知恵袋の人>>> 5CH(旧2CH)の人”と思う(^^ rio2016.2ch.net/test/read.cgi/math/1484442695/494 前にも紹介したが、新入生もいるだろうから、下記再掲しておく。なお、信用できないに、私スレ主も含めること。定義から当然の帰結だが(^^; https://note.chiebukuro.yahoo.co.jp/detail/n98014 Yahoo 知恵袋 数学の勉強法 学部〜修士 ライター:amane_ruriさん 最終更新日時:2012/8/6 (抜粋) 私は修士1年生ですので、正直に言いますとこの部分はあまり書いているのが正しいとは思えません。趣味で書いているものだと認識していただければ良いのではないかと思っております。 大学3、4年に入ってまず怖いのが数学の本の氾濫でしょう。まず何を読んで何をすればいいのか分からなくなります。 そして、自分のやっていることがいかにちっぽけな存在なのかというのを実感させられます。(多分皆がそうでしょう。)そして、結果が問われてきます。 ここで、数学科は「入るのは易しいけどプロになるのは難しい」ということが実感させられてきます。 2012年8月3日現在、書泉グランデで有名数学者の薦める本が
800 名前:ありました。森重文先生を初めとして本の多さに圧倒されました。(足立恒雄先生は信頼と安心のブレなさ) 2. 2ch*)の内容は信用できるか? 基本的に信用できません。先生>周りの人>>> 2ch*)や知恵袋の人です。何故かというといつも同じことしか言っていないから。多分きちんと検証していないで想像で議論しているだけではないのかと私は思っています。 (まあ、自分もあんまり信用できないけど) 数学をする場合は、問題が解けることも重要なのですが問題設定を作ることが大切です。そういう時に、どういう風に学んできたのかとか、正確な知識がどういう部分でどれだけ持っているのか、調和性や、生まれて来た環境っていうのが重要になってきます。 ただ、それがどうも2ch*)の人は見られない(し、そもそも偉そうなことを言っている人が本当にできるかどうか分からない。)。こういう類のものは勉強不足ですとか、分かっていませんでしたで済まされるものではないと個人的には思うのですが。 (引用終り) (注*):2chは、現5ch) [] [ここ壊れてます]
801 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:30:00.28 ID:2o5RsZjT.net] >>740 つづき スレ68 https://rio2016.5ch.net/test/read.cgi/math/1560374890/12- 12 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/06/13(木) 06:36:37.80 ID:tNmlg93R [12/62] 過去スレより rio2016.2ch.net/test/read.cgi/math/1484442695/338 338 現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/04/09(日) 23:46:26.46 ID:Rh9CzQs6 スレ主は、皆さんの言う通り、馬鹿であほですから、基本的に信用しないようにお願いします 大体、私は、自分では、数学的な内容は、筆を起こさない主義です じゃ、どうするかと言えば、出典明示とそこからの(抜粋)コピペです まあ、自分なりに、正しそうと思ったものを、(抜粋)コピペしてます が、それも基本、信用しないように 数学という学問は特に、自分以外は信用しないというのが基本ですし ”証明”とかいうらしいですね、数学では その”証明”がしばしば、間違っていることがあるとか、うんぬんとか 有名な話で、有限単純群の分類 ”出来た!”と宣言した大先生が居て、みんな信用していたら、何年も後になって、”実は証明に大穴が空いていた”とか おいおい、競馬じゃないんだよ(^^; https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4 単純群 1981年にモンスター群が構成されてからすぐに、群論の研究者たちがすべての有限単純群を分類したという、合計10,000ページにも及ぶ証明が作られ、1983年にダニエル・ゴレンスタインが勝利を宣言した。 これは時期尚早だった、というのはいくつかのギャップが、特に準薄群(英語版)の分類野中で発見されたからである。このギャップは2004年に1300ページに及ぶ準薄群の分類によって埋められており、これは現在は完璧であると一般に受け入れられている。 (引用終り) 以上
802 名前:132人目の素数さん mailto:sage [2019/10/09(水) 07:30:31.81 ID:gm3ls/Yz.net] テンプレじゃなく名前で主旨を表したほうがいいな このスレは脱線が主旨とか 理解せずにコピペしますとか 完全に遊びだとか
803 名前:132人目の素数さん mailto:sage [2019/10/09(水) 07:32:43.88 ID:gm3ls/Yz.net] 一番いいのは 【無理解】現代数学 脱線スレ【上等】 だなw
804 名前:132人目の素数さん mailto:sage [2019/10/09(水) 07:36:06.86 ID:gm3ls/Yz.net] ま、ガロア理論で懲りたんなら、次からスレ名から外しなよ
805 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:37:30.49 ID:2o5RsZjT.net] >>740 補足 下記、いまチェックしたら、リンク切れていたね https://note.chiebukuro.yahoo.co.jp/detail/n98014 Yahoo 知恵袋 数学の勉強法 学部〜修士 ライター:amane_ruriさん 最終更新日時:2012/8/6
806 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:40:07.26 ID:2o5RsZjT.net] >>742 - ありがとさん(^^ 千葉にあっても、東京ディズニーランド ガロアは、現代数学の象徴です! (゜ロ゜; ガロアも、少しやるよw
807 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:41:13.98 ID:2o5RsZjT.net] 哀れな素人さんが、ガロアについて
808 名前:質問してきたときに、回答したのは、おらっちだよ(゜ロ゜; [] [ここ壊れてます]
809 名前:132人目の素数さん mailto:sage [2019/10/09(水) 07:47:11.08 ID:gm3ls/Yz.net] >>746 >ガロアも、少しやるよw ところで、正規部分群は理解できた?w >>747 素人同士の見当違いな会話が売りなんでしょ? だったら、タイトルは「ガロア」じゃなくて「脱線」だよな そう書いときゃ、間違いだらけでも免罪符になるからw
810 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:47:44.09 ID:2o5RsZjT.net] >>745 (引用開始) 下記、いまチェックしたら、リンク切れていたね https://note.chiebukuro.yahoo.co.jp/detail/n98014 Yahoo 知恵袋 数学の勉強法 学部〜修士 ライター:amane_ruriさん 最終更新日時:2012/8/6 (引用終り) そうそう、これ、URLで”note.chiebukuro.yahoo”とあるように、下記の「知恵ノート」サービスだったんだ が、”2017年11月30日をもって終了”したんだね(^^; https://ja.wikipedia.org/wiki/Yahoo!%E7%9F%A5%E6%81%B5%E8%A2%8B Yahoo!知恵袋 (抜粋) Yahoo!知恵袋(ヤフーちえぶくろ)とは、Yahoo! JAPANが運営する、電子掲示板上で参加者同士が知識や知恵を教え合うナレッジコミュニティ、知識検索サービスである。 サービスは2004年4月にベータ版として提供され、2005年11月に正式版として開始された。 2006年5月からはモバイル版のサービスを開始し、携帯電話(フィーチャーフォン)などでも利用できるようになっていたが、携帯電話(iモード、EZweb、Yahoo!ケータイ)版のサービスが終了した、2016年12月14日以降、携帯電話からは利用出来ない[1]。 2011年からは「知恵ノート」サービスも開始されたが、2017年11月30日をもって終了[2]。
811 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:48:37.58 ID:2o5RsZjT.net] >>748 一応、「雑談」とは入れてあるんだなw(゜ロ゜;
812 名前:132人目の素数さん mailto:sage [2019/10/09(水) 07:50:23.94 ID:gm3ls/Yz.net] >>750 とにかくスレ名に「古典ガロア理論も読む」は要らないな 正規部分群まだ理解できてないんでしょ?無理すんなってw
813 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:51:55.16 ID:2o5RsZjT.net] >>740 (引用開始) 2. 2ch*)の内容は信用できるか? 基本的に信用できません。先生>周りの人>>> 2ch*)や知恵袋の人です。何故かというといつも同じことしか言っていないから。多分きちんと検証していないで想像で議論しているだけではないのかと私は思っています。 (まあ、自分もあんまり信用できないけど) (引用終り) まあ、典型が下記だな(^^ 現代数学の系譜 カントル 超限集合論 https://rio2016.5ch.net/test/read.cgi/math/1570237031/1-
814 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 07:54:41.97 ID:2o5RsZjT.net] >>752 >(まあ、自分もあんまり信用できないけど) スレ主も含む(再帰的定義)w(^^
815 名前:132人目の素数さん mailto:sage [2019/10/09(水) 09:05:54.59 ID:qCk5cBh4.net] コピペの切り貼りによる知性の創発はあり得るか? 化け学廃棄物最終処分場スレ あたりが妥当なスレ名だな。
816 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 11:15:54.73 ID:nHmzRvjt.net] >>718 >正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした >みなさんに、教えて頂きました >ありがとう(^^ 変換σ-1・H・σは、共役変換というんだけど(^^ 下記の共役類wikipediaに詳しい ((編集されて変わることがあるので)スナップショットとして抜粋コピペするけど文字化けご容赦。原文リンク見た方が良いだろう) 元で書くと、σ-1・h・σだけど、積演算(・)が可換(アーベル)だと、 σ-1・h・σ=σ-1・σ・h=hなので 高校数学の範囲では可換ばかりだから、”何が、そんなにうれしいのか!?”となるのよw(^^ 大学数学で非可換を勉強すると分かる。群論を、これからやる人、いまやっている人は、”共役”を理解しておくといい https://ja.wikipedia.org/wiki/%E5%85%B1%E5%BD%B9%E9%A1%9E 共役類 (抜粋) とくに群論において、任意の群は共役類(きょうやくるい、英: conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする[1][2][要ページ番号]。 定義 G を群とする。G の2つの元 a と b が共役 (きょうやく、conjugate) であるとは、G の元 g が存在して b = g^-1ag を満たすことである[注釈 1]。ここで元 g
817 名前:^-1ag を ag のように表すこともある[3]。 共役性は同値関係であり、したがって G を同値類に分割する[注釈 2]ことが直ちに示せる。G の元 a を含む同値類 aG = { ag | g ∈ G } は a の共役類 (conjugacy class) と呼ばれる[4]。群 G の共役類が C1, …, Ch であるとき数 k(G) := h を類数[訳語疑問点] (class number) と呼ぶ[4]。 一般に、対称群 Sn の共役類の数は n の分割の数に等しい。これは各共役類が、 {1, 2, ..., n} の元の並び替えを除いて、{1, 2, ..., n} のちょうど 1 つの分割を巡回置換(英語版)の集まりと見做したものに対応するからである。 立方体の(自明でない)回転(英語版)は、(面ではなく立体としての)対角線に関する置換として特徴づけることができるが、これも共役変換として記述することができる。 ユークリッドの運動群はユークリッド空間における対称性の共軛変換(英語版)によって調べられる。 つづく [] [ここ壊れてます]
818 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 11:16:25.54 ID:nHmzRvjt.net] >>755 つづき 性質 ・G の 2 元 a と b が共役ならば、同じ位数をもつ。より一般に、a についてのすべてのステートメントは b = g^-1ag についてのステートメントに翻訳できる、なぜならば写像 φ(x) = g^-1xg は G の内部自己同型だからである。 ・G の元 a に対して、 {a} が共役類であることと a が中心 Z(G) に属することは同値である。 ・有限群の共役類の元の数は群の位数を割り切る。より精密には共役類 aG の元の数 |aG| は a の G における中心化群 CG(a) = { g ∈ G | ga = ag } の指数 [G : CG(a)] に等しい[4]。これは共役作用に関する軌道・固定群定理による。 ・a と b が共役であれば、それらのベキ ak と bk も共役である[注釈 3]。したがって k 乗をとることは共役類上の写像を与え、どの共役類がその原像にあるかを考えることができる。例えば、対称群において、type (3)(2) (3-cycle と 2-cycle) の元の平方は type (3) の元であり、それゆえ (3) の power-up 類の 1 つは類 (3)(2) である。類 (6) は別の類である。 ・群 G の位数が奇数ならば |G| ≡ k(G) (mod 16) が成り立つ (W. Burnside)[5]。 ・有限群 H, K に対して k(H × K) = k(H) × k(K) が成り立つ[6]。 ・有限群 G とその正規部分群 N に対して [G : N]^-1 k(N) <= k(G) <= k(G/N) k(N) が成り立つ[7]。 ・自然数 h が与えられたとき、k(G) = h となる有限群 G は同型を除いて高々有限個しかない (E. Landau, 1903)[8]。 つづく
819 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 11:16:41.86 ID:nHmzRvjt.net] つづき 類等式 G が有限群であれば、群の任意の元 a に対して、a の共役類の元は中心化群 CG(a) の剰余類と 1 対 1 の対応にある。このことは次のことを観察することによってわかる。同じ剰余類に属する任意の 2 元 b, c (したがって中心化群 CG(a) のある元 z に対して b = zc)は a を共役するときに同じ元を生じる: b^-1ab = (zc)^-1a(zc) = c^-1z^-1azc = c^-1ac. したがって a の共役類の元の数は G における中心化群 CG(a) の指数 [G : CG(a)] である。したがって各共役類の元の数は群の位数を割り切る。 さらに、各共役類からひとつずつ代表元 xi を選べば、共役類の非交性から |G| = 琶 |xiG| = 琶 [G : CG(xi)]がいえる。中心 Z(G) の各元はそれ自身だけを含む共役類をなすことに注意すれば、類等式 (class equation) を得る[4]: |G| = |Z(G)| + 琶 [G : CG(xi)] ただし和は中心に含まれない各共役類からの代表元を渡る。 群の位数 |G| の約数の知識は中心や共役類の元の数についての情報を得るためにしばしば使うことが
820 名前:できる。 つづく [] [ここ壊れてます]
821 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 11:17:21.83 ID:nHmzRvjt.net] >>757 つづき 応用例 非自明な有限 p-群 P(つまり位数 pn の群、ただし p は素数で n > 0)を考えよう。類等式を使うと 「すべての非自明な有限 p-群は非自明な中心をもつ」 ことが証明できる[9]。 証明:P の任意の共役類の元の数は P の位数を割らなければならない。よって中心に含まれていない各共役類 Ci の元の数もまたあるベキ pki(ただし 0 < ki < n)であることが従う。すると類等式から pn = |P| = |Z(P)| + 琶 pki となる。ゆえに p は |Z(P)| も割らなければならず、したがって |Z(P)| > 1 であることがわかる。 共役集合と共役部分群 群 G の部分集合 S (S は部分群である必要はない)と g ∈ G に対して Sg = g^-1Sg = { g^-1sg | s ∈ S } を S の g による共役集合という[10]。SG を部分集合 S の群 G における共役集合からなる集合とする。 次の定理はよく使われる。 G の部分集合 S が与えられたとき、SG の元の数は G における S の正規化群 NG(S) の指数に等しい[4]: |SG| = [G : NG(S)]. これは G の元 g と h に対して Sg = Sh であることと gh^-1 が NG(S) の元であること??つまり g と h が NG(S) を法として等しいこと??の同値性から従う。 この公式は共役類の元の数に対する前に与えられたものを一般化することに注意しよう(S = {a} とせよ)。 上記は G の部分群について話すときに特に有用である。部分群のなす集合は共役部分群へ分割できる。共役部分群は同型であるが、同型な部分群が共役であるとは限らない。たとえば、アーベル群は同型な 2 つの異なる部分群をもつかもしれないが、それらは決して共役でない。 一方でシロー部分群は互いに共役である(シローの定理)。また、部分群 H がそのすべての共役部分群と一致することは部分群は正規部分群であることに他ならない。 つづく
822 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 11:17:44.41 ID:nHmzRvjt.net] >>758 つづき 共役作用 任意の 2 元 g, x ∈ G に対して g.x = gxg^-1 と定義すれば、G の G 上の群作用になる。この作用の軌道は共役類であり、与えられた元の固定部分群はその元の中心化群である[4]。 同様に、G のすべての部分集合からなる集合への、あるいは G のすべての部分群からなる集合への、G の群作用を g.S = gSg^-1 と書くことで定義できる。 幾何学的解釈 弧状連結位相空間の基本群における共役類は自由ホモトピーのもとでの自由ループ(英語版)の同値類と考えることができる。 注釈 2.^これが意味するのは群の各元はちょうど1つの共役類に属し、類 aG と bG が等しいことと a と b が共役であることは同値であり、そうでなければ互いに素である。 3.^ 証明:a = g^-1bg であれば、ak = (g^-1bg)(g^-1bg)...(g^-1bg) = g^-1bkg。 (引用終り) 以上
823 名前:132人目の素数さん mailto:sage [2019/10/09(水) 11:42:36.01 ID:w/ORvsp9.net] おっちゃんです。 >>740 >2. 2ch*)の内容は信用できるか? > 基本的に信用できません。 ここ、正確には、正しい内容と間違った内容が混在している、だね。 まあ、当然のことで、内容が正しいか否かは己で判断して下さい、ということ。
824 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 13:25:04.58 ID:nHmzRvjt.net] メモ https://www.nikkei.com/article/DGXMZO40853860U9A200C1X20000/ プリファード・ネットワークス 深層学習の応用容易に 日経優秀製品・サービス賞 2019/2/4 13:30 リサーチャー 得居誠也氏 「なんか使いにくいよね」。深層学習のフレームワーク「Chainer(チェイナー)」を開発したきっかけは、会社で同僚と交わした何気ない雑談だった。2015年、当時27歳だった。 フレームワークは、深層学習のプログラムを書くのに利用する。チェイナーを開発するまで一般的だったものは、自然言語処理では使いにくかった。同僚との雑談で浮かんだヒントを基に、休みを活用して開発に着手。幸いにもバグなど落とし穴がなく、基礎となる部分のコードを書き上げるまでは10日ほど。 チェイナーの名前は、プログラムを書くとデータが鎖状につながるため、岡野原大輔副社長のアイデアでつけられた。 1カ月後の15年6月に「チェイナー」として発表し、誰でも使えるソフトウエアとして公開した。チェイナーの利用者が増えるとともに、利用者がよりよく改良してくれる流れができればと考えた。グーグルやフェイスブックなど、米国のネット大手より先んじたことで、PFNが持つ技術力などを認知してもらえるきっかけにもなった。 チェイナーはAIのシステム開発でよく使われている「パイソン」というプログラミング言語の力を最大限に活用した。プログラミングが得意な人ばかりではなく、数学や統計学を学んできた人もいる。プログラミングに不慣れでもパイソンさえ理解していれば、深層学習のプログラムを書けるようにすることで、アイデアを落とし込みやすく、研究を早く進められるようにした。 15年の公開以降、日本だけでなく海外も含めて、多くのエンジニアがチェイナーを使ってくれていることに感謝している。先日、インドにいる大学生から質問のメールが送られてきて、遠く離れた国の人も愛用してくれているのが、うれしかった。 今、取り組んでいるのは高速化だ。深層学習の研究で扱うデータの規模が大きくなっているほか、画像処理半導体(GPU)などハードウエアの性能の進化も著しい。どれだけ大規模で高速に学習できるかが問われるようになっている。他のフレームワークの先を行くよう改良に全力をそそいでいる。
825 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 13:26:25.23 ID:nHmzRvjt.net] >>760 >> 基本的に信用できません。 >ここ、正確には、正しい内容と間違った内容が混在している、だね。 >まあ、当然のことで、内容が正しいか否かは己で判断して下さい、ということ。 おっちゃん、どうも、スレ主です。 フォロー、ありがとう(^^
826 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 13:32:03.17 ID:nHmzRvjt.net] >>761 youtube 得居誠也経歴(自己紹介より) 学部東大数学科→修士 東大情報系 https://www.youtube.com/watch?v=dkAzjRldJn0 得居誠也「AIを書く」ー高校生のための東京大学オープンキャンパス2017 模擬講義 706 回視聴?2018/10/24 東大TV / UTokyo TV チャンネル登録者数 1.22万人 東大TV( todai.tv/ )で公開中の一部のコンテンツをこちらのYouTubeチャンネルでもご覧いただけます。 01:16 自己紹介 03:11 深層学習の様々な例 13:52 AIとゲーム 24:03 汎用AIと特化型AI 34:47 深層学習の研究 ★高校生のための東京大学オープンキャンパス https://www.u-tokyo.ac.jp/opendays/in... https://www.youtube.com/redirect?redir_token=5pSXQBaD9Y2QdxLwOKbQE3J071h8MTU3MDY4MTY2NkAxNTcwNTk1MjY2&event=video_description&v=dkAzjRldJn0&q=https%3A%2F%2Fwww.u-tokyo.ac.jp%2Fopendays%2Findex.html
827 名前:132人目の素数さん mailto:sage [2019/10/09(水) 17:05:36.13 ID:w/ORvsp9.net] それじゃ、おっちゃんもう寝る。
828 名前:132人目の素数さん [2019/10/09(水) 19:18:45.73 ID:gm3ls/Yz.net] >>755-759 理解を試すために質問するね ガロア理論で「群の正規列」(正規部分群の列)って出てくるね これ、なんで部分群の列じゃダメなの? 分かってる人は簡単にこたえられる質問だね
829 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 21:30:57.78 ID:2o5RsZjT.net] 吉野彰さん、ノーベル賞おめでとう(^^ https://ja.wikipedia.org/wiki/%E5%90%89%E9%87%8E%E5%BD%B0 吉野彰
830 名前: (抜粋) 吉野 彰(よしの あきら、1948年(昭和23年)1月30日[1] - )は、電気化学を専門とする日本のエンジニア、研究者。大阪大学博士(工学)、旭化成名誉フェロー。 携帯電話やパソコンなどに用いられるリチウムイオン二次電池の発明者の一人。 エイ・ティーバッテリー技術開発担当部長、旭化成 イオン二次電池事業推進室・室長、同 吉野研究室・室長、リチウムイオン電池材料評価研究センター・理事長、名城大学大学院理工学研究科・教授などを歴任。2019年にノーベル化学賞受賞[5]。 略歴 1960年 - 吹田市立千里第二小学校卒業 1963年 - 吹田市立第一中学校卒業 1966年 - 大阪府立北野高等学校卒業 1970年 - 京都大学工学部石油化学科卒業 1972年 - 京都大学大学院工学研究科石油化学専攻修士課程修了 1972年 - 旭化成工業株式会社(現旭化成株式会社)入社 1994年 - (株)エイ・ティーバッテリー技術開発担当部長 1997年 - 旭化成(株)イオン二次電池事業推進室 室長 2003年 - 旭化成フェロー就任 2005年 - 論文博士にて大阪大学で博士(工学)の学位取得 2005年 - 旭化成(株)吉野研究室 室長 2017年 - 名城大学大学院理工学研究科 教授 2019年10月 - ノーベル化学賞受賞が決定 リチウムイオン電池の開発 吉野が次の点に着目したことによりLIB(リチウムイオン・バッテリー)が誕生した 正極にLiCoO2を用いることで、 正極自体がリチウムを含有するため、負極に金属リチウムを用いる必要がないので安全である 4V級の高い電位を持ち、そのため高容量が得られる 負極に炭素材料を用いることで、 炭素材料がリチウムを吸蔵するため、金属リチウムが電池中に存在しないので本質的に安全である リチウムの吸蔵量が多く高容量が得られる また、特定の結晶構造を持つ炭素材料を見いだし[10]、実用的な炭素負極を実現した 1986年、LIBのプロトタイプが試験生産され、米国DOT(運輸省、Department of Transportation)の「金属リチウム電池とは異なる」との認定を受け、プリマーケッティングが開始された 1991年、リチウムイオン二次電池 (LIB) は吉野の勤務する旭化成とソニーなどにより実用化された [] [ここ壊れてます]
831 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 21:31:46.21 ID:2o5RsZjT.net] >>764 おっちゃん、お休みなさい(^^
832 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 22:24:15.43 ID:2o5RsZjT.net] >>765 >これ、なんで部分群の列じゃダメなの? それは、”ガロア対応”って話なんだけど、その前に、もう少し、 共役変換σ-1・H・σを語ると ・一応、話を有限群論に限って HがGの部分群として、σはH以外の元とする σ-1・H・σは、また、群になるのです ・(略証) 1)単位元の存在、単位元e∈Hに対し、 σ-1・e・σ=σ-1・σ=e∈σ-1・H・σ 2)逆元の存在、元h∈Hに対し、逆元が存在してh^-1∈Hなので (σ-1・h・σ)・(σ-1・h^-1・σ)= (σ-1・h)・(σ・σ-1)・(h^-1・σ)=(σ-1・h)・(h^-1・σ)=e なので、逆元の存在σ-1・h^-1・σ∈σ-1・H・σ が示された ・ガロアが、シュバリエへの手紙で、「固有分解」などと書いているが 正規部分群N では、σ-1・N・σ=N (これは定義でもある) (略証) 例えば、二つの元 n1,n2∈Nとして (σ-1・n1・σ)・(σ-1・n2・σ)=(σ-1・n1)・(σ・σ-1)・(n2・σ)=σ-1・(n1・n2)・σ ここで、e=σ・σ-1を真
833 名前:中に挟むと σ-1・(n1・n2)・σ=σ-1・(n1・σ・σ-1・n2)・σ=(σ-1・n1・σ)・(σ-1・n2・σ) ここで、σ-1・N・σ=Nだったから、σ-1・n1・σ=n1'∈N、σ-1・n2・σ=n2'∈N なる、元n1'、n2'がN中に存在する なので、(σ-1・n1・σ)・(σ-1・n2・σ)=n1'・n2'∈N が、定義「σ-1・N・σ=N」から導かれるのです ・σ-1・N・σ=N→左からσを作用させると σ・σ-1・N・σ=σ・N→”N・σ=σ・N”が成立します ・これが、共役変換σ-1・H・σの意味です (参考) https://plaza.rakuten.co.jp/azabird/diary/201001130000/ 2010.01.13 オーギュスト・シュバリエへの手紙(ガロアによる)バード6787さん (抜粋) Gの夢より http://galois.motion.ne.jp/index.html A「200年前の手紙にも、説明が書いてある。こんな風に。 群Gが群Hを含むとき、群Gは G = H + HS + HS' + ・・・ と、Hの順列に同じ置換を掛けて作られる組へと分解されるし、また G = H + TH + T'H + ・・・ と、同じ置換にHの順列を掛けて作られる組へとも分解される。 この2通りの分解は、通常は、一致しない。一致するときが、固有分解と呼ばれるものだ。 [] [ここ壊れてます]
834 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 22:48:16.24 ID:2o5RsZjT.net] あと、正規部分群と商群の話もあるんだな(^^
835 名前:132人目の素数さん [2019/10/09(水) 22:52:01.24 ID:gm3ls/Yz.net] >>768 まだ答えに達してないな >>769 答えは即書いたほうがいいな
836 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/09(水) 23:35:16.26 ID:2o5RsZjT.net] 群Gの元g,g’、Nを正規部分群として gN=Ng、g’N=Ng’、g・g’N=Ng・g’ 1)gN・g’N=Ng・g’N=g・g’N・N=g・g’N (N・N=Nとして) 2)g・g’の逆元(g・g’)^-1=g’^-1・g^-1 (g・g’・g’^-1・g^-1=e) 3)単位元eだけは、Nと共通 eN=Ne で、gN・eN=gN・N=gN なので、群Gを、正規部分群Nで類別した eN、g1N、g2N・・・ たちは、演算”・”に対して、群を成す これを、商群G/Nとか書きます (ここで、上記1)などで、gN=Ngを使っている。なので、gN=Ngが成立たないと、まずいのです)
837 名前:132人目の素数さん mailto:sage [2019/10/10(木) 06:40:12.35 ID:JxHMvoEF.net] >>770 それじゃ答えとしては半分程度だな G/Nが商群となるのに、Nが正規部分群である必要がある、というのはいいよ 肝心なのは、なぜG/Nが群にならないといかんのか? 答えられるかな?
838 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/10(木) 10:32:57.70 ID:K6AlmfoH.net] >>772 まあ、そう慌てないで 種本でもないけど、お薦めは、下記「矢ヶ部 巌:数V方式 ガロアの理論」 これ分かり易かった。大学教程のガロア理論を学んだ人なら、一日で読めるでしょう あと、PDFでネットに落ちているのが、下記「ガロア第一論文(galois-1.pdf)渡部 一己 著」PDF ここから、引用させてもらおうと思います 紙の本は、書棚に沢山あるけど、マウス選択からコピペができないんだな ネットに上がっている文書がコピペには楽です 本なら、アルティンとか、Coxとかもあるけどね(^^ www.ne.jp/asahi/music/marinkyo/matematiko/suusan.html.ja 矢ヶ部 巌:数V方式 ガロアの理論 まりんきょ学問所 数学の部屋 MARUYAMA Satosi 最終更新日:2019-08-23 概要 3人の対話により、ガロアの理論を紹介している。副題は「アイデアの変遷を追って」 感想 初版は 1976 年、第 9 刷は 2002 年に出ている。その後入手困難となっていたが、 2016 年に新装版が出た。 (引用終り) https://sites.google.com/site/galois1811to1832/ ガロアの第一論文を読む 渡部 一己 著(2018.1.28) https://sites.google.com/site/galois1811to1832/galois-1.pdf ガロア第一論文(galois-1.pdf)渡部 一己 著(2018.1.28) 紹 介 ガロア(1811-1832)の「第一論文」とは方程式が累乗根で解けるための条件を求めたもので,ガロアが残した論文の中でも一番まとまりのある論文である. 5次以上の一般方程式が代数的に解けないということは,1826年にアーベルが証明した.一旦このことが明らかにされると,解ける方程式と解けない方程式の違いは一体何なのか,それが気になってくる. それを明らかにしたのが,ガロアの「第一論文」である. ガロアは二十歳という若さで早世した大数学者だが,彼がどのようにしてそれを発見したのか. もちろん方程式が解ける理由は知りたいが,やはりガロアがどのようにして彼の理論を発見したのか,それが知りたかった.
839 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/10(木) 10:38:01.22 ID:K6AlmfoH.net] >>773 追加 http://(URLがNGなので、キーワードでググれ(^^ ) はてなブログ 女の人のところへ来たドラえもん 数V方式ガロアの理論と現代論理学(その3) 渡辺麻友 数V方式ガロアの理論 現代論理学 2018-07-09 (抜粋) それでは、早速なんだけどね。今回は、矢ヶ部巌(やかべ いわお)『数V方式ガロアの理論』(現代数学社)という本を中心として、数学の冒険をしたいんだ。 結弦「『数V』って、なんですか?」 「あっ、そうよ。結弦は、小学校6年生なのよ」 そうだったね。この本の書かれた時代の高校では、1年生、2年生、3年生、と上がるにつれて、数T、数U、数Vと、名前が付いていた。 『数V方式』 とは、高校3年生の教科書レヴェルで書いてある。という意味なんだよ。 結弦「じゃあ、僕は、6年分、飛び級ですね」 若菜「私も、4年分飛び級。すごい冒険に、なりそうですね」 「太郎さんが言うには、ゼミとかゼミナールという形式で、議論したら良いということなの」
840 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/10(木) 10:41:41.17 ID:K6AlmfoH.net] >>774 矢ヶ部巌先生、お亡くなりになられていたんだ ご冥福をお祈り申し上げます 合掌 https://www.nippyo.co.jp/blogsusemi/keijiban/fuhou/ 日本評論社 訃報 矢ヶ部巌(やがべ・いわお)氏(九州大学名誉教授)が2017年12月19日に逝去された.享年87歳.専門は代数学. 著書に『数学での証明法』(共立出版),『数III方式 ガロアの理論』(現代数学社)などがある. 小誌では,1970年代からご登場いただき,特に「エレガントな解答をもとむ」で長年ご出題いただいた.
841 名前:132人目の素数さん [2019/10/10(木) 19:15:38.86 ID:67UjvVEp.net] おまえみたいな詐欺師に冥福祈られても迷惑なだけ
842 名前:132人目の素数さん [2019/10/10(木) 19:57:28.80 ID:JxHMvoEF.net] >>773 >まあ、そう慌てないで まさか今から泥縄で勉強するつもりじゃないだろうね?w
843 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/10(木) 21:00:11.20 ID:JCH5uyU5.net] >>777 >まさか今から泥縄で勉強するつもりじゃないだろうね?w ふっ、ガロア理論を「泥縄で勉強する」? 一夜漬け? ガロア理論を理解していない人の言葉だなw 「泥縄で勉強」、「一夜漬け」、できる人は、相当優秀だろうな(^^; 昔を思い出すと、矢ヶ部なども、易しく書かれているんだけど、それでも難しかったな
844 名前:132人目の素数さん [2019/10/10(木) 21:20:36.00 ID:JxHMvoEF.net] >>778 >ガロア理論を理解していない人 正規部分群も誤解した君のことかと思ったよ
845 名前:132人目の素数さん [2019/10/10(木) 21:22:27.41 ID:JxHMvoEF.net] >>778 >易しく書かれているんだけど、それでも難しかったな 正規部分群を誤解するようじゃ全然理解できないでしょ
846 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 07:51:06.61 ID:aKfhohl9.net] >>778 ああ、これ、分り易いな(^^ いつも、コピペで
847 名前:ィ世話になっている再帰の反復さん https://lemniscus(URLがNGなので、キーワードでググれ(^^ ) 再帰の反復blog (はてなブログ) 2012-05-27 方程式からガロア理論 (抜粋) 方程式の解法の話からガロア理論にたどり着くまでの要点のようなもの。 ガロア以前 ガロアが論文を書くより以前にラグランジュ、ガウス、ルフィニ、アーベルらの研究により、次のような結果が得られていた。 2次3次4次の方程式について: 提案されてきた方程式の解法はどれも解の置換の性質と密接に関係している。(ラグランジュ) 5次以上の方程式について: 解の置換の性質を調べることにより、5次以上の方程式が一般的にはべき根で解けないことが証明される。(ルフィニ、アーベル) 円周等分方程式などについて: 解の置換の性質を調べることにより、5次以上でもいくつかのタイプの方程式がべき根で解けることが証明される。(ガウス、アーベル) ここからさらに進んで、任意の方程式についての解の置換(=ガロア群)の性質を考察したのがガロアだった、という流れになる。 1.対称性(シンメトリー) 2,方程式の対称性: 2次方程式の場合 3.3次、4次方程式の場合 4.5次以上の方程式の非可解性(ルフィニ、アーベル) 5.円周等分方程式(ガウス) 6.間奏: アーベルの方程式論について 7.解の置換(ガロア群) 8.原始元の最小多項式と基本定理の証明 9.方程式の可解性 10.追記: 方程式の可解性の概要 つづく [] [ここ壊れてます]
848 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 07:51:30.84 ID:aKfhohl9.net] >>781 つづき 対称性と群の関係 方程式の解法と対称性 さらにまとめると次のようになる。 2次方程式を解くとき、ルートを取ることで対称性を崩している。 3. 3次、4次方程式の場合 3次と4次の方程式の場合についても 方程式を解くとき、べき乗根を取ることで対称性を崩している。 4. 5次以上の方程式の非可解性(ルフィニ、アーベル) 2,3,4次方程式の解法のポイントは 方程式を解くとき、べき乗根を取ることで対称性を崩している。 ということだった。 一方、5次以上の方程式が一般的には代数的に解けない理由を一言で言うと、 5次以上の方程式は、べき乗根を取ることでは崩せない対称性を持っている。 となる(これは5次以上の方程式が強い対称性を持っているというよりも、べき乗根の対称性を崩す力はそれほど強くないということだと思う)。 前に書いた「5次以上の方程式が代数的に解けないことについて」では対称性を下げていく過程を段階的に追っていき非可解性を示したけど、証明の要点となっているのは次のこと。 a^p = Aの関係があり、Aが3次循環置換(x1 x2 x3)と5次循環置換(x1 x2 x3 x4 x5)の両方で不変ならば、aもこれらの置換で不変である。 つづく
849 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 07:51:47.75 ID:aKfhohl9.net] >>782 つづき 7. 解の置換(ガロア群) 「5次方程式に解の公式がないこと」と「円周等分方程式がべき根で解けること」の証明はどちらも、方程式がどんな解の置換を持っているかということが重要だった。 そこでより一般的にどんな方程式にも通用する形で解の置換を定義したい。歴史的には次の2つのやり方がある。 ・単拡大(単純拡大)性にうったえて、原始元とその最小多項式を使って定義する(ガロア)。 ・体の自己同型写像として定義(デデキント)。 このうちデデキントのものの方が簡潔だしたぶん判りやすい。ただし「方程式が解けるかどうか」という視点から見ると、解が判らない状態でどうやってその写像を求めていいのかサッパリ判らないところが気持ち悪いかもしれない。 8. 原始元の最小多項式と基本定理の証明 さらに、もしも次の2つの性質 1)g(x)は重解を持たない。 2)vをどの解vkに置換することも可能である(別に言い方をすると、全てのvkがvの有理式で書ける。体の言葉でいうと、どのvkももとの体に入っている)。ガロアの定義ではこれが成り立っている場合だけを扱っている。 が成り立っている場合は 群について: 解の置換の総数(群の位数) = g(x)の次数 となる。 おおざっぱに言えば、1が成り立つのを分離拡大、2が成り立つのを正規拡大、1+2をガロア拡大と呼ぶ。なのでガロア拡大の場合は、 ・体の拡大次数 = 群の位数 が成り立つ。 ガロア理論の基本定理は一言で言えば ガロア拡大では、体(拡大
850 名前:体の中間体)と群(ガロア群の部分群)が1対1に対応する というもので、それはこの「ガロア拡大では、体の拡大次数=群の位数」を使って証明される。ちゃんと証明するにはいろいろ細かな補足が必要になるけど。 (基本定理における体と群の対応というのは、もう少し詳しくは ・体 → 体のどの元(数)も動かさない置換の集まり(群) ・群 → 群のどの元(置換)でも動かない数の集まり(体) がちょうど逆の関係になるというもの。 またアルティンの線形代数的な証明では、拡大次数と写像の個数の関係を、単拡大性や多項式の話を使わずに導く) つづく [] [ここ壊れてます]
851 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 07:52:07.45 ID:aKfhohl9.net] >>783 つづき 9. 方程式の可解性 ガロア理論の基本定理が証明されると、 ・べき乗根の添付と四則演算でどんな数が書けるか(=べき乗根を使ってどんな体の拡大が可能か) という問題が ・どんな部分群が存在するか ということに帰着するので、あとは群の性質を考察することで方程式の可解性の条件が判ることになる。 ただし実際にそれをやるのはけっこう面倒だし、そこまでたどり着く頃にはたぶんへろへろになっている。 追記: 方程式の可解性の概要 以下、方程式の可解性についての概要を追加して書いておく。 (引用終り) 以上
852 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 08:17:28.47 ID:aKfhohl9.net] >>781 下記、8.4 有理式と置換の ”系 8.21. f, φ を n 変数有理式とする.f を変えない Sn の置換全体を G とする: G = {σ ∈ Sn | σf = f}. G の置換を φ に作用させて得られる異なる式全体を φ = φ1, φ2, . . . , φl とする.このとき,φ1, φ2, . . . , φl の対称式は f の有理式に表わさ れる.” が基本になるのだが、詳しく説明されない場合が多い 矢ヶ部本や倉田本には、詳しい(^^ (参考) www.ha.shotoku.ac.jp/~yamauchi/ 数学第4研究室 N. Yamauchi, Dept. of Math. 岐阜聖徳学園大学 www.ha.shotoku.ac.jp/~yamauchi/alg3digchap8add.pdf 8.4 有理式と置換 (抜粋) 8.4.3 有理式の有理式 定理 8.20. 2 個の有理式 f(x1, . . . , xn), φ(x1, . . . , xn) について,f を変えない Sn の置 換は φ も変えないとする. (σf) = f ⇒ σφ = φ. このとき,φ は f の有理式に表わされる. 系 8.21. f, φ を n 変数有理式とする.f を変えない Sn の置換全体を G とする: G = {σ ∈ Sn | σf = f}. G の置換を φ に作用させて得られる異なる式全体を φ = φ1, φ2, . . . , φl とする.このとき,φ1, φ2, . . . , φl の対称式は f の有理式に表わさ れる. (追加参考) www.ha.shotoku.ac.jp/~yamauchi/alg3dig08.pdf 第 8 章 置換の群 www.ha.shotoku.ac.jp/~yamauchi/alg3digchap9.pdf 第 9 章 根の有理式 www.ha.shotoku.ac.jp/~yamauchi/alg3dig05.pdf 第 5 章 数体 5.3 方程式と体 5.3.5 べき根による解法 www.ha.shotoku.ac.jp/~yamauchi/alg3dig04.pdf 第 4 章 4 次方程式 www.ha.shotoku.ac.jp/~yamauchi/alg3dig0-2.pdf 代数学 III 2017 目次 (抜粋) 5 次方程式には「解の公式」が存在しないことが証明され,次いでガロア. (Evariste Galois, 1811-1832)が一般次数の方程式について解の公式が存在するための条. 件を求めることに成功した. (引用終り) 以上
853 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/11(金) 08:34:56.44 ID:aKfhohl9.net] >>785 追加 不変式なども関係しています(^^ 正20 面体群というのは、5次方程式の解法で出てきます www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/H16-mukai.pdf 平成16年度(第26回)数学入門公開講座テキスト(京都大学数理解析研究所,平成16年8月2日〜8月5日開催) 不変式の話 ?対称式と方程式から第14 問題の反例へ? 向井茂 (抜粋) 計算例(拡大正20 面体群) §7 方程式の不変式 §8 第14問題に対する永田の反例
854 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/12(土) 10:38:55.78 ID:0oc9Ztsl.net] >>786 追加 正二十面体関連 https://ja.wikipedia.org/wiki/%E6%AD%A3%E4%BA%8C%E5%8D%81%E9%9D%A2%E4%BD%93 正二十面体 https://en.wikipedia.org/wiki/Icosahedral_symmetry Icosahedral symmetry hooktail.sub.jp/algebra/PolyhedronGroup2/ 物理のかぎしっぽ 著者 : Joh , 初版 : 2006-04-23, 最終更新 : 2006-04-23 正多面体群2 正十二面体と正二十面体 補 正十二面体が 5 次の交代群に対応することは,当初面倒なので結果しか示さなかったのですが,要望があったのでここに補足します. https://kiu.repo.nii.ac.jp/?action=repository_action_common_download&item_id=334&item_no=1&attribute_id=18&file_no=1 [PDF] 正20面体群の構造(石田秀美教授退職記念号) 北川正一 著 九州国際大学 雑誌名教養研究 2010-03 https://member.ipmu.jp/yuji.tachikawa/ Yuji Tachikawa Professor, Kavli IPMU, University of Tokyo. https://member.ipmu.jp/yuji.tachikawa/japanese-articles.html 日本語による解説記事 https://member.ipmu.jp/yuji.tachikawa/transp/nadanotes.pdf 群と対称性の話 立川裕二 2014 年 10 月 18 日 (出身高校で選択制土曜講座で話せと言われたので準備した。) 1 正多面体の対称性 まず、おしまいのページの展開図を切り取って、正四面体、正八面体、正二十面体をつくっておくこと。 https://glim-re.repo.nii.ac.jp/ GLIM-IR 学習院学術成果リポジトリ https://glim-re.repo.nii.ac.jp/?action=repository_uri&item_id=1279&file_id=22&file_no=1 解の公式と正多面体群 益子雅文 学習院高等科紀要,(5),35-47 (2007-07-20) (抜粋) 四次以下の方程式は,係数から出発し,それらに四則演算とべキ根をとる算法(n√) とを行って,解をすべて表わすことができる(解の公式).この小論では,まず方程式の ガロア群である対称群Snを正多面体群によって視覚化し,それを用いて四次以下の方程 式の解をベキ根で表わす過程を示し,さらに五次方程式の解の公式が一般には存在しないことをみてみようと思う. つづく
855 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/10/12(土) 10:39:23.91 ID:0oc9Ztsl.net] >>787 つづき www.math.chuo-u.ac.jp/ENCwMATH/ewm51.pdf Encounter with Matematics 第51回 2009年10月 正20面体にまつわる数学〜その2〜 www.math.chuo-u.ac.jp/ENCwMATH/51/ewm51_Sekiguchi1.pdf 正 面体群からの旅たち 東京農工大学 関口次郎 (抜粋) この講演の内容は 年の「数学史研究会」(津田塾大学)と数学セミナー 2009年4月号の記事がもとになっている 2.クラインの「正20面体と5次方程式」 https://books.rakuten.co.jp/rb/9570192/ 楽天ブックス 発売日: 1997年04月 著者/編集: フェリックス・クライン, 関口次郎 レーベル: シュプリンガー数学クラシックス 出版社: シュプリンガー・ジャパン 発行形態: 単行本 ページ数: 317p 以上