[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 02:01 / Filesize : 718 KB / Number-of Response : 1095
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む77



32 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/09/11(水) 07:43:52.73 ID:IlUCyPH9.net]
>>30
つづき

5)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
 だから、この場合は”x ∈ y → x ⊂ y ”成立
6)で、我々が通常扱う集合は、超限帰納法も適用可の場合が多く、∈−順序が成立つとして良い
 ∈−順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
7)「まったく別もの」ではないが、別もの
8)なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る
 つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^;
(∈−順序を仮定しないとどうなるか? 上記のように、分からんかった(^^;
 坪井先生の上記、”整列順序の全体は(大きすぎて)集合にはならない”のような記述もあるので、
 自分の考えが、”公理的集合論”の範囲内か範囲外かが、判断できないので、ギブアップします)

(参考)
www.math.tsukuba.ac.jp/~tsuboi/
Akito Tsuboi 筑波大
www.math.tsukuba.ac.jp/~tsuboi/under.html
学群関係
www.math.tsukuba.ac.jp/~tsuboi/und/14logic3.pdf
数理論理学II Akito Tsuboi 筑波大

(追加参考)
https://www.practmath.com/ordinal-number/
実用的な数学を
2019年4月18日 投稿者: TAKAN
順序数 Ordinal Number
(抜粋)
ともあれそんな『比較』ですが、
なにでやるかというと、「帰属関係 ∈ 」を使ってやります。
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<718KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef