[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 21:00 / Filesize : 715 KB / Number-of Response : 1095
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む61



832 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/03/02(土) 20:05:28.21 ID:EWUsu9uA.net]
>>754
>>100列に関係する同値類100だけの代表を選ぶなら、選択公理は不要?
>要否を人に聞くんじゃなくて、
>その解法で勝率がどうなるか、お前自身の考えを書けばいいだけ。

(>>>717より)
(引用開始)
>同値類は選択公理なしに存在する 
同値類存在は否定していない
そこは、一致している
100列に関係する同値類100だけの代表を選ぶなら、選択公理は不要?
(引用終り)

えーと、上記だったね
じゃ、簡単に示す!(^^
1.まあ、可算選択公理くらいは、仮定するよね
2.同値類100個の存在のみを簡単に示す
 
 1)時枝は「どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.もちろんでたらめだって構わない.」 (>>758より)
 だったから
 ・1列目 すべての箱にπ+1
 ・2列目 すべての箱にπ+2
 ・以下同様に、k列目 すべての箱にπ+k(k=1〜100) を入れ、100列に至る

 2)同様に同値類に属する代表元を、作る
 ・上記、k列目で、k+m番目の箱にπを入れ、kは1〜100列に至る
  決定番号は、各k+m+1となる

 3)これ以外の同値類の元(=可算無限数列)は、必要となれば、好きなだけ増やせば良い
 4)これで、同値類100個の存在と、同代表と決定番号の存在のみを示すことができた!(^^

3.もちろん、これは完全なR^Nの同値類の分類は完全ではなく、かつ、一つの同値類でさえ、完全ではない!
  しかし、これらを、完全にするためには、選択公理を使う必要があると思うよ
  (「選択公理は不要」というなら、こんどは貴方が証明してみなさい w(^^ )

以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<715KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef