- 261 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/02/22(金) 14:03:00.64 ID:2jiflFZh.net]
- KMS状態
https://ja.wikipedia.org/wiki/KMS%E7%8A%B6%E6%85%8B (抜粋) 量子力学や場の量子論の系の統計力学では、熱平衡状態にある系の性質を数学的な対象で記述することができて、久保-マーティン-シュウィンガー状態(KMS state)、一般には KMS状態 と呼ばれる この状態は、Kubo (1957) で導入された KMS条件を満たし、Martin & Schwinger (1959)ではこれを使い 熱力学的 グリーン函数 を定義し、Rudolf Haag, M. Winnink, and N. M. Hugenholtz (1967) は熱平衡状態を定義することに使った KMS状態 最も簡単に研究できる場合は、有限次元のヒルベルト空間の場合で、そこでは相転移や自発的対称性の破れといった複雑なことが発生しない 最初に示唆したように、無限次元ヒルベルト空間では、相転移、自発的な対称性の破れ、トレースクラスではない作用素、分散函数の発散というような、多くの問題に直面する この式は、体積と粒子数を無限大とする熱力学的極限を正しく与えるが、もし相転移や自発的対称性の破れが存在すれば、KMS 状態は一意ではない KMS 状態の密度行列は、富田・竹崎理論(英語版)(Tomita?Takesaki theory)を経て、ユニタリ変換と関係している。ユニタリ変換は、時間遷移(あるいは時間遷移とゼロでない化学ポテンシャルの内部対称性の変換)を合わせた変換を意味する
|

|