[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 00:55 / Filesize : 565 KB / Number-of Response : 1074
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む59



411 名前:132人目の素数さん mailto:sage [2019/01/28(月) 01:03:38.54 ID:I3RTouch.net]
>>168で「特化した証明」と書きましたが、まったく任意の実数xも含めて考えてみたので書きますね。

当初考えていた証明→ sin のn倍角公式を使うもの
でしたが、オイラーの公式を使った方が簡単。
オイラーの公式: e^(ix)=cos(x)+i*sin(x).
そして、x:π/n の整数倍 とは限らず、x:任意の実数 でもある程度の分析は可能→命題参照
Qを有理数体、Rを実数体とする。
xをπの整数倍ではない任意の実数とする。K=Q(cos(x)), L=Q(e^(ix))=K(i*sin(x)) とおくと
L/K は2次拡大。また、L∩R=K という関係がある。
以上のことから次の命題が成立することが分かる。

命題 sin(x)∈K ⇔ i∈L.

最も簡単なケース(円分体)
e^(ix)の整数乗でi に等しいものがあるとき ⇔ Lが1のn乗根(nは4の倍数)の体のとき

i∈L だとしても、それが「e^(ix)の整数乗」という形で含まれるとは限らないので
sin(x)\not∈K の証明はより難しい。
sinとcos を入れ替えた場合→ x+π/2 として分析できる。

(以上、オイラーの公式と初歩的な代数しか使ってない。)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<565KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef