[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2ch.scのread.cgiへ]
Update time : 04/10 23:07 / Filesize : 525 KB / Number-of Response : 968
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



378 名前:132人目の素数さん mailto:sage [2019/01/08(火) 01:58:34.49 ID:mZcV146T.net]
(>>345の続き)
[第3段]:n≧2 のとき 1+…+1/n−log(n+1)>1+…+1/(n−1)−log(n) なることを示す。
任意の n≧2 なる正整数nに対して a_n=1+…+1/(n−1)−log(n) とおく。
すると、n≧2 のとき、n・e^{1/n}>n+1 であって、e^{1/n}>1+1/n であるから、1/n>log(1+1/n)、
従って、log(1+1/n)=log((n+1)/n)=log(n+1)−log(n) から 1/n>log(n+1)−log(n) であって、
1/n−log(n+1)>−log(n)、故に、定義から a_{n+1}>a_n を得る。故に、n≧2 のとき a_{n+1}>a_n。

[第4段]:n≧2 のとき a_{n+1}>a_n>0 なることを示す。
n≧2 のとき、e^{1+…+1/(n−1)}>n から 1+…+1/(n−1)>log(n) であって、1+…+1/(n−1)−log(n)>0 であるから、
定義から、a_n>0。また、n≧2 のとき a_{n+1}>a_n。故に、n≧2 のとき a_{n+1}>a_n>0。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<525KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef