さて、前スレ54で議論していたのが、下記の定理1.7と関連の系1.8だ (スレ53で一段落ですが) 定理1.7 (スレ26のNo.422 に書いた定理) f : R → R とする. Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ } と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の上でリプシッツ連続である. 証明 このとき, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない. 証明 定理1.7 が使えて, f はある開区間(a, b) の上でリプシッツ連続である. 一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ. (引用終り) つづく