対数関数 a=log_x|y| y∈R\{0}についても、 ”二通り”のうち、最初の方法を使えばいい https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E5%AF%BE%E6%95%B0%E5%87%BD%E6%95%B0 複素対数函数 (抜粋) 任意の非零複素数 z は無限個の対数を持つ[1]から、そのような表記が紛れのない意味を為すように気を付けねばならない。
極形式を用いて z = re^iθ (r > 0) と書くならば、w = ln r + iθ は z の対数の一つを与えるが、これに 2πi の任意の整数倍を加えたもので z の対数はすべて尽くされる[1]。
https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Riemann_surface_log.svg/220px-Riemann_surface_log.svg.png (複素対数函数の多価なる虚部を枝が分かるように描いたもの。複素数 z が原点を周れば、対数の虚部が上下する。これにより、原点はこの函数の分岐点となる。)