- 140 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2018/12/18(火) 10:33:52.62 ID:9tXcwzeR.net]
- >>115-119
おっちゃん、どうも、スレ主です。 ありがとう だが、いつもながら、議論の本筋を外しているね 入試では、答案は戻ってこない!! 採点者は、熱心に汚い手書き答案を読んでくれるが、”採点ミスを誘導せず高得点を狙う書き方”をすべき log_x|y|(おっちゃん) vs ”log_x (y) (ここに、log_x (y) は、xを底とする対数関数である)”(私) の違い分かる? そう、log_x (y) の「定義」を書いてあるってことだ(^^ つまり、自分の導入した記号や関数については、逐一「定義」を書く いろんな数学の教科書や論文を見てみな。全部そうなっているよ この数学の作法(定義を書く)が身についていない答案は、採点官の心証はマイナスだろうね (特に数学科の院試ではね) 「log_x|y|(おっちゃん)」を、前スレ >>724のID:bB/JzT3mさんが、”xを底とする対数関数”だろうと救ってくれた (落ちこぼれピエロは気づいてなかった(^^; ) だが、入試なら、採点官のそばには、ID:bB/JzT3mさんはいないよ あと、類似だが >仮定からxは正の超越数だから、任意の0とは異なる整数pに対して x^p は正の超越数である。 これ最初に、「背理法を使う」と宣言しないと、心証悪いよ 実際、前スレ>>697では ”仮定から x>0 であり、|y|≠0 かつ |y|≠1 だから、log_x|y| は0ではない有理数である”と書いていたでしょ?(^^ (参考:前スレ>>732) (引用開始) [命題]:任意の正の超越数xと、任意の 正かつy≠1 なる代数的数 y∈R に対して、log_x (y) は無理数である。 (注:ここに、log_x (y) は、xを底とする対数関数である) [証明]:背理法を使う log_x (y) が有理数 とする。 log_x (y) = p/q (ここに、p,q は整数) 従って、x^{p/q}=y これは、矛盾である。 (∵超越数の有理数ベキが、代数的数と等しくなったから) よって命題は成り立つ。 QED (引用終わり)
|

|