[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2ch.scのread.cgiへ]
Update time : 04/10 00:01 / Filesize : 529 KB / Number-of Response : 835
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



334 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2018/12/04(火) 18:32:40.10 ID:ytTsiYMH.net]
>>302
帰納極限(直極限又は順極限)がムズイ(^^
もっと易しいのはないのかな?
d.hatena.ne.jp/m-hiyama/20180322/1521694065
檜山正幸のキマイラ飼育記
2018-03-22 (木)
圏論の極限を具体的に
(抜粋)
www.chimaira.org/img4/cat-cone-bad.png
頂点と底面の点を結ぶ線は、錐を自然変換と考えたときの成分に相当するので、成分線にします。

Fの極限はFを底面とする錐の圏Cone(F)の終対象(余極限は余錐の圏の始対象)として定義されます。この定義を文字通りに受け取ると、極限とは錐です。しかし多くの場合は、極限とは対象を意味するでしょう。この2つが区別されないことが多いですが、ここでは区別しましょう。

・LimCone(F)は、Fの極限錐を意味する。Fの極限錐は、錐の圏Cone(F)の終対象である。LimCone(F)∈|Cone(F)|
・LimObj(F)は、Fの極限対象を意味する。Fの極限対象は、Fの極限錐の頂点である。LimObj(F)∈|Set|(一般には、LimObj(F)はFの余域である圏の対象)

こう定義した上で、Limまたはlimは文脈で解釈してください、となります。実際の使用例を見ると、文脈なしでは判断できないようです。

具体的な小さな圏Cに対して、具体的な関手 F:C→Set を与えて、具体的に錐の圏Cone(F)を構成して、その終対象として極限錐を求め、極限錐の頂点として極限対象を取り出してみるべきです。幾つかやってみます。

錐の圏の終対象と錐集合関手の表現対象
この記事の目的は、錐集合関手 ConeSetF:Set→Set の表現対象(表現集合)Rを具体的に構成することです。では、何のために構成するのか、構成して何がうれしいのか? それを確認しておきます。

錐集合関手の表現対象(表現集合)を作ってしまえば、それはもとの関手 F:C→Set の極限(錐の圏の終対象)になるわけです。作り方がどうであれ、でき上がるものは同型なので、作り方は気にせずに(できりゃいいのだ)、とにかく頑張ればいいのです。表現対象を作れば、極限対象が手に入るのです。

関手圏[Dop, Set](D上の前層の圏ともいう)で考えましょう。関手圏の対象KとD(-, r)は、関手圏内で同型なので、
K =〜 D(-, r) in [Dop, Set]
同型の右辺D(-, r)は、米田埋め込み〈Yoneda embedding〉による r∈D の像です。
(引用終わり)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<529KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef