[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2ch.scのread.cgiへ]
Update time : 04/10 00:01 / Filesize : 529 KB / Number-of Response : 835
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



326 名前:{100} からなる有限集合とする。
すると、Sの濃度は card(S)=100 となる。E'をSの有限なσ-集合体とする。card(E')=2^{100} とする。
任意の card(S')=100 なる 有限集合S'とSとの間には全単射が存在するから、
各 k=1,…,100 に対して a_k を I=(0,1] の部分区間として、k=1 のときは a_1=(0,1/100]、
各 k=2,…,99 に対しては a_k=( (k−1)/100,k/100 ]、k=100 のときは a_{100}=(99/100,1]
と見なせる。このとき、Sの100個の箱の中の代表元の実数 a_1,…,a_{100} は
どの2つも互いに素なIの100個の部分区間からなる集合になるから、∪_{ i=1,…, }(a_i)=I となる。
ここに、各 i=1,2,…,100 に対して a_i⊂I である。有限集合Sのσ-集合体E'の濃度は card(E')=2^{100} としている。
区間 I=(0,1] のルベーグ測度は1である。そこで、EをIのσ-集合体とする。ここに、区間Iの濃度は連続体濃度cに等しいから、card(E)=2^c。
そうすると、零集合のときと同様に可測空間 (I,E) が構成されて、card(E')<card(E) になる。いわゆるSのσ-集合体E'をIのσ-集合体Eで覆うことになる。
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<529KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef