- 962 名前:120゚-θ) = 2t/(√3 +t),
AP2 = AP1 sin(60゚+θ)/sin(60゚-θ) = AP1 sin(120゚-θ)/sin(60゚-θ) = sinθ / sin(60゚-θ) = 2t/(√3 -t), S(t) = 儕0P1A - 僊P1P2 = (1/2)sin(∠A) AP1 (1-AP2) = (1/2)((√3)/2)(2t/(√3 +t))((√3 -3t)/(√3 -t)) = (3/2)t(1-t√3)/(3-tt), t = 2√6 - √3 のとき極大 (3√3 -2√6)/4 = 0.074293 θ = 16.5505° ・30゚<θ<60°のとき AP1 = sinθ / sin(120゚-θ) = 2t/(√3 +t), BP1 = 1 - AP1 = (√3 -t)/(√3 +t), BP2 = BP1 / AP1 = (√3 -t)/2t, S(t) = 儕0P1B - 傳P1P2 = (1/2)sin(∠B) BP1 (1-BP2) = (1/2)((√3)/2)(√3 -t)(3t-√3)/(t(√3 +t)) = (3/8)(√3 -t)(t√3 -1)/(t(√3 +t)), t = (2√6 +√3)/7 のとき極大 (3√3 -2√6)/4 = 0.074293 θ = 43.4495° [] - [ここ壊れてます]
|

|