[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:58 / Filesize : 518 KB / Number-of Response : 726
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



578 名前:
”1つずつではなくて”のところが
ユニークです
下記引用の記述と違いますね

因みに、貴方が引用の http://mathworld.wolfram.com/AxiomofInfinity.html でも
”Following von Neumann, 0=emptyset, 1=0^'={0}, 2=1^'={0,1}, 3=2^'={0,1,2}, .... ”
だとある
それは、下記ですよ

https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86
(抜粋)
ペアノの公理

集合 A が後者関数に関して閉じているとき、
つまり 「a が A の元であるならば suc(a) も A の元である」が成り立つときに、
A は帰納的集合であるという。

ここで、次のように定義する。
・0:=Φ ={}
・N := 0 を含むあらゆる帰納的集合の共通部分
・suc := 後者関数のNへの制限

集合 N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。

無限集合の公理は 0 を含む帰納的集合の存在を主張しているので、ここでの N の定義に問題はない。
自然数のシステム (N, 0, suc) はペアノの公理を満たすことが示される。
それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。

・ 0:={}
・ 1:=suc (0)={0}
・ 2:=suc (1)={0,1}={0,{0}}
・ 3:=suc (2)={0,1,2}={0,{0},{0,{0}}}
等々である。 この構成法はジョン・フォン・ノイマンによる。
(引用終り)
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<518KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef