- 528 名前:」
・「>>15の積分 ∫[R^N]{∫[E_s]dν(k)}dμ(s) の内側の積分 ∫[E_s]dν(k) を計算する際は s は固定されており確率変数ではなく、 外側の積分 ∫[R^N]{f(s)}dμ(s) (f(s):=ν(E_s))を計算する際は確率変数ですが箱の独立性はf(s)に関係しません。 というのも、f(s)は100面サイコロを振って1以外が出る確率を表してても同じことだからです。」 ・「ゼロに近いと結論した外側の積分計算でRの直積分布、つまりは各箱の独立性が顔を出す余地がある。 独立性を考慮すれば、測度計算によりν(s)≧1/100となるsの測度はゼロに近いと即座に言える。 記事の戦略ではν(s)が定数99/100で押さえられているために、外側の積分において独立性は計算に影響を与えない。」 (引用終り) 香ばしいですね 独創的 「問題が出題されたら箱の中身は決定され確率変数ではなくなる」 「記事の戦略ではν(s)が定数99/100で押さえられているために、外側の積分において独立性は計算に影響を与えない」 素晴らしいじゃないですか! (証明が一つもないけどね) どうぞ、アカデミックな場で議論して下さい 正しければ、論文が一つできるでしょう これは、5chで議論するのは勿体ない つづく [] - [ここ壊れてます]
|

|