- 513 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2018/11/15(木) 21:29:54.80 ID:77uFGJVQ.net]
- >>461
つづき https://rio2016.5ch.net/test/read.cgi/math/1483314290/27 d∈Nの性質から確率は1/2以上と即答したいところ。 しかし実際にはdが可測ではなく、事象d(r1)≦d(r2)を含む加法族で 確率空間を構成することはできないと思います。 この部分を測度論的確率論で説明可能と言うには、 やはりここでも内測度の議論が必要になるのではないでしょうか? https://rio2016.5ch.net/test/read.cgi/math/1483314290/28 >>27のような単純な問題に対し確率論が普通の意味での確率を 与えないことこそがこの問題の本質と捉えていました。 (そこを一歩進んでinner/outer measureの議論に入らないかぎり、 まったく進歩がないわけですが) https://rio2016.5ch.net/test/read.cgi/math/1483314290/32 確率空間は(R^N,μ)×(R^N,μ)、事象d(r1)≦d(r2)はR^N×R^Nの部分集合E={(r1,r2)|d(r1)≦d(r2)}。 この場合、Eは非可測なので>>15と同様に考えると、 r1,r2∈R^Nを選ぶ順序によって確率P(d(r1)≦d(r2))は変わることになります。 r1を先に選ぶなら確率1、r2を先に選ぶなら確率0。 同時に選ぶなら、選び方の条件を追加つまり非可測集合にも(非加法的)測度を与えなければ 確率は定まらないですね。 でも、このようなことはGAME1での混合戦略には関係ないでしょう。 https://rio2016.5ch.net/test/read.cgi/math/1483314290/33 >>27はHart氏のいう単純戦略、あるいは>>15のGAME-Aでの混合戦略の確率μ(E_k)に対応するものですね。 GAME1での混合戦略では出題後の勝つ確率はν(E_s)。 確率的選択の順序を(無意識のうちに)入れ替えてしまう(GAME1とGAME-Aなどを混同してしまう)誤りが 「当てれるのに、当てれないと思ってしまう」ことの原因である、というのが私の主張です。 非可測集合の内測度・外測度を考えたり、非加法的測度を与えたりするのは、 確かに普通の(可測集合しか扱わない)確率論ではないかもしれません。 でもそれはちょっとした発展であって、別の確率論というものではないでしょう。 つづく
|

|