[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:58 / Filesize : 518 KB / Number-of Response : 726
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



38 名前:4" rel="noopener noreferrer" target="_blank" class="reply_link">>>34

つづき

(2) Suppose we alter the definition of g so that 2^q
is replaced by w(q), where w:Z+ --> Z+ is some increasing
function. Then the following are left to the reader.
(See [Nymann's paper] for (a) and other related results.)
(a) If w(q) = q^2, then g is nowhere differentiable.
(Use (2).)
(b) If w(q) = q^3, then g is differentiable on a dense,
uncountable set of irrationals, but nowhere twice
differentiable.
(c) No matter how rapidly w increases, the set A_0
of points of nondifferentiability is residual.

As a consequence of (c), no function vanishing at the
irrationals and discontinuous at the rationals can be
differentiable at the irrationals. In fact, a little
more argument shows that no function can be discontinuous
at every rational but differentiable at every irrational.
(This last has been known, by another method of proof,
for some time, e.g. [Boas' "Primer of Real Functions"],
[Fort's paper].) The following theorem implies (c) and
the above statements, and provides a nice application
of the Diophantine approximation point of view. (A slightly
weaker version appears in [Heuer's 1966 paper] and is
considered from a more general viewpoint in [Beesley,
Morse, and Pfaff's 1972 paper].)

つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<518KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef